63-ая МАТЕМАТИЧЕСКАЯ ОЛИМПИАДА РЕСПУБЛИКИ МОЛДОВА Кишинэу, 01 марта – 04 марта 2019 Первый день, 2 марта 2019 года. VIII-й класс

Схема оценивания

8.1. Найдите все натуральные числа вида abcd, которые делятся на 3 и удовлетворяют одновременно условиям: a+b+d=11, a+c+d=12, b+c+d=10.

	Этапы решения со схемой распределения баллов				
Шаг	Этапы решения	Количество баллов			
1	Определил, что сумма всех цифр делится на 3: $(a+b+c+d)$:3 и $(a+b+c)$:3	1 бал			
2	Определил, что: из $(a+b+c)$:3 следует d :3 и что $d \in \{3,9\}$	2 балла			
3	Используя условия задачи вывел, что при $d=3$ получаем $c=4$	1 бал			
4	Используя условия задачи определил, что $b = 3$ и $a = 5$ и определил число $\overline{abcd} = 5343$	1 бал			
5	Используя условие задачи определил, что для $d=9$ имеем $c=1$	1 бал			
6	Используя условия задачи определил, что $b=0$ и $a=2$ и определил число $\overline{abcd}=2019$	1 бал			
	Общее количество баллов	7 баллов			

Примечание: Любое другое правильное решение оценивается в 7 баллов.

63-ая МАТЕМАТИЧЕСКАЯ ОЛИМПИАДА РЕСПУБЛИКИ МОЛДОВА Кишинэу, 01 марта – 04 марта 2019 Первый день, 2 марта 2019 года. VIII-й класс

Схема оценивания

8.2. Докажите, что число $A = 2^{2020} + 2^{1013} + 2^{1010} - 2^{508} + 9$ делится на число $B = 2^{1010} - 2^{505} + 1$.					
	Этапы решения со схемой распределения баллов				
Шаг	Этапы решения	Количеств о баллов			
1	Сгруппировал слагаемые числа A : $A = (2^{2020} + 2^{1010} + 1) + (2^{1013} - 2^{508} + 8)$	1 бал			
2	Получил $A = (2^{2020} + 2 \cdot 2^{1010} + 1 - 2^{1010}) + 8 \cdot (2^{1010} - 2^{505} + 1)$	2 балла			
3	Получил $A = (2^{1010} + 1)^2 - (2^{505})^2 + 8 \cdot (2^{1010} - 2^{505} + 1)$	1 бал			
4	Разложил на множители число A и получил $A = (2^{1010} - 2^{505} + 1) \cdot (2^{1010} + 2^{505} + 9)$	2 балла			
5	Сделал вывод: $A = B \cdot (2^{1010} + 2^{505} + 9) + 0 \Rightarrow A$: B	1 бал			
	Общее количество баллов	7 баллов			

63-ая МАТЕМАТИЧЕСКАЯ ОЛИМПИАДА РЕСПУБЛИКИ МОЛДОВА

Кишинэу, 01 марта – 04 марта 2019

Первый день, 2 марта 2019 года. VIII-й класс

Схема оценивания

8.3. Задан прямоугольный треугольник ABC, где $m(\angle A) = 90^{\circ}$. Биссектриса угла ABC пересекает серединный перпендикуляр стороны [AC] в точке D, расположенной вне треугольника ABC. Докажите, что ΔBDC является прямоугольным.

Этапы решения со схемой распределения баллов				
Шаг	Этапы решения	Количеств		
		о баллов		
1	Правильный рисунок	1 бал		
2	Используя определение серединного перпендикуляра DM стороны $[AC]$	1 бал		
	вывел, что AM = MC и $DM \perp AC$			
3	Доказал, что $m(\angle CMO) = 90^{\circ}$, где $DM \cap BC = \{O\}$ и $DM \parallel AB$ или $MO \parallel AB$	1 бал		
4	Применил теорему Талеса и вывел, что точка О является серединой отрезка	2 балла		
	[BC]			
5	Доказал, что ΔBOD равнобедренный и $BO=DO$	1 бал		
6	Доказал, что ΔBDC является прямоугольным в D	1 бал		
	Общее количество баллов	7 баллов		

Примечание: Любое другое правильное решение оценивается в 7 баллов.

63-ая МАТЕМАТИЧЕСКАЯ ОЛИМПИАДА РЕСПУБЛИКИ МОЛДОВА Кишинэу, 01 марта – 04 марта 2019 Первый день, 2 марта 2019 года. VIII-й класс

Схема оценивания

	йдите все пары действительных чисел (x, y) , удовлетворяющие равенству				
$13(x^2 +$	$(-y^2) = 4(6xy + 40x - 35y - 125).$				
	Этапы решения со схемой распределения баллов				
Шаг	Этапы решения	Количеств о баллов			
1	Написал равенство: $13x^2 + 13y^2 - 24xy - 160x + 140y + 500 = 0$	1 бал			
2	Сгруппировал слагаемые и получил $4x^2 + 9y^2 + 100 - 12xy - 40x + 60y + 9x^2 + 4y^2 + 400 - 12xy - 120x + 80y = 0$	1 бал			
3	Представил левую часть равенства в виде суммы двух квадратов: $(2x-3y-10)^2 + (3x-2y-20)^2 = 0$	2 балла			
4	Написал систему уравнений	1 бал			
5	Решил систему уравнений и получил x =8 и y =2 и написал правильный ответ: (x, y) = $(8, 2)$	2 балла			
	Общее количество баллов	7 баллов			

Примечание: Любое другое правильное решение оценивается в 7 баллов.