MINISTERUL EDUCAȚIEI AL REPUBLICII MOLDOVA

Agenția Națională pentru Curriculum și Evaluare

Numele: Prenumele: _____ Patronimicul: Instituția de învățământ: Localitatea: **Raionul / Municipiul:**

MATEMATICA (ÎN LIMBA ENGLEZĂ)

EXAMEN NATIONAL DE ABSOLVIRE A GIMNAZIULUI SESIUNEA DE BAZĂ

08 iunie 2017 Timp alocat -120 de minute

Rechizite și materiale permise: pix cu cerneală albastră, creion, riglă, radieră.

Instrucțiuni pentru candidat:

- Citește cu atenție fiecare item și efectuează operațiile solicitate.
- Lucrează independent.

Îți dorim mult succes!

Numele și prenumele evaluatorului: ______ Punctaj total:_____

Annex

$$(a - b)(a + b) = a^{2} - b^{2}$$
$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$
$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$
$$x^{m} \cdot x^{n} = x^{m+n}$$
$$x^{m} \cdot x^{n} = x^{m-n}$$
$$(x^{m})^{n} = x^{m \cdot n}$$
$$\mathcal{V}_{cyl.} = \pi R^{2} H$$
$$1 \text{ liter} = 1000 \text{ cm}^{3}$$

Nr.	Items	Score
1.	Fill in the box so that the statement becomes true. "If $a = -7 - 2$ and $b = \frac{6}{5} \cdot \frac{15}{2}$, then the value of the ratio $\frac{a}{b}$ is the number	L 0 3
2.	On the picture, the right triangle <i>ABC</i> is represented, where $m(\angle ABC) = 90^\circ$, $m(\angle BAC) = 35^\circ$ and <i>BK</i> is an altitude. Write in the box the measure in degrees of the angle <i>KBC</i> . $m(\angle KBC) = \boxed{}.$	L 0 3
3.	On the picture, the graph of the function $f: \mathbb{R} \to \mathbb{R}, f(x) = ax^2 + bx + c, a \neq 0,$ is represented. Using the picture, fill in the box with one of the following expressions "strictly increasing" or "strictly decreasing", so that the statement becomes true. "On the interval [1; + ∞) the function f is"	L 0 3
4.	Petru did his homework in 3 hours and 20 minutes. For subjects of real profile he spent 60% of this time. Determine how many minutes did Petru spend to do the homework for the subjects of real profile. <i>Solution:</i>	L 0 1 2 3 4

5.	Calculate: $\frac{2^3 \cdot 4^{-2}}{8^{-1}}$. Solution:	L 0 1 2 3 4
	Answer:	
6.	Let <i>A</i> be the set of real solutions of the equation $3x^2 + 7x - 6 = 0$. Determine the set $A \cap \left[-1; \frac{7}{10}\right]$. Solution:	L 0 1 2 3 4
7.	Consider the isosceles trapezoid <i>ABCD</i> , where $AD \parallel BC$, $m(\angle A) = 45^{\circ}$, $BC = 4$ cm. Determine the perimeter of the trapezoid <i>ABCD</i> , if it is known that its height is 2 cm. <i>Solution:</i> A	L 0 1 2 3 4 5

8.	Tudor filled with water a barrel with the volume of 145 liters. First he carried water with a pail with the volume of 5 liters. Overall he carried 25 pails. Determine how many pails of each type did Tudor carry. Solution: Answer:	L 0 1 2 3 4 5
	Consider the function $f: \mathbb{D} \to \mathbb{D}$ $f(x) = -4x \pm 3$ Determine all real values of x	
9.	Consider the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -4x + 5$. Determine all real values of x , for which the value of the function f is not greater than -2 . Solution:	L 0 1 2 3 4 5
	Answer: $\lambda \in$	
10.	Ion and two of his friends decided to drink a glass of juice per each. Determine, if a liter of juice is enough to fill three glasses with the form of a right circular cylinder with the radius of the base of 3 cm and the height of 10 cm. <i>Solution:</i>	L 0 1 2 3 4
	1110 WCI	

11.	Solve in the set \mathbb{R} the equation $x^2 - 2 \qquad 1 \qquad 2x - 3$	L 0
	Solution: $\frac{x^2 - 2}{x^2 + x} - \frac{1}{x + 1} = \frac{2x - 3}{x}.$	0 1 2 3 4 5 6
	Answer:	
12.	Consider the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (m^2 - 2) x + m$. Determine all real values of m , for which the graph of the function f passes through the point $A(1; 4)$ and intersects the y – axis in a point with a negative ordinate. <i>Solution:</i>	L 0 1 2 3 4
	Answer:	