MINISTERUL EDUCAȚIEI ȘI CERCETĂRII AL REPUBLICII MOLDOVA

MATEMATICA (ÎN LIMBA ENGLEZĂ)

EXAMEN NAȚIONAL DE ABSOLVIRE A GIMNAZIULUI SESIUNEA DE BAZĂ

06 iunie 2022 Timp alocat – 120 de minute

Rechizite și materiale permise: pix cu cerneală albastră, creion, riglă, radieră.

Instrucțiuni pentru candidat:

- Citește cu atenție fiecare item și efectuează operațiile solicitate.
- Lucrează independent.

Îți dorim mult succes!

Numele și prenumele evaluatorului:	Punctaj total:

Annex

$$\mathcal{V}_{cylinder} = \pi R^2 H$$

$$1 l = 1 dm^3$$

Nr.	Items	Score
2.	Let $a = \frac{27}{2} \cdot \frac{8}{3}$ and $b = -5 + 1$. Fill in the boxes with integer numbers, so that the statement becomes true. " $a = \Box$, $b = \Box$, $\frac{a}{b} = \Box$." On the picture, the rhombus $ABCD$ is represented, where $m(\angle BAD) = 40^{\circ}$. Write in the box the measure in degrees of the angle CBD . $m(\angle CBD) = \Box$	L 0 1 2 3 L 0 3
3.	Consider the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x - 5$. Write in the box one of the expressions "positive" or "negative", so that the statement becomes true. "The zero of the function f is a real number."	L 0 3
4.	For a concert, 1200 tickets were put up for sale. 45% of the tickets were sold. Determine how many tickets remain unsold. Solution:	L 0 1 2 3 4
5.	Answer: Calculate the value of the expression $\frac{2\sqrt{3}+9}{\sqrt{3}} - \sqrt{27}$.	L 0
	Answer:	1 2 3 4

6.	Determine the largest real solution of the equation $6x^2 + 7x + 2 = 0$. Solution:	L 0 1 2 3 4
7.	In the triangle ABC , the altitude AD has the length equal to 4 cm, and $m(\angle ACB) = 45^\circ$. Determine the perimeter of the triangle ABC , if it is known that $BD = 3$ cm. Solution:	L 0 1 2 3 4 5 5

8.	Teams of 6 athletes and teams of 4 athletes participated in a sports competition. A total of 23 teams and 104 athletes participated. Determine how many teams of 6 athletes and how many teams of 4 athletes participated in the competition. <i>Solution:</i>	L 0 1 2 3 4 5
	Answer:	
9.	Consider the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -3x + 8$. Determine the real values of x , for which $f(x) - f(1) \le 2x$. Solution:	L 0 1 2 3 4 5
10.	A container in the shape of a right circular cylinder with the radius of the base of 3 dm and the height of 5 dm is full of milk. Determine if the milk from the container is enough to fill 150 bottles with the capacity of 0.9 liters. Solution: Answer:	L 0 1 2 3 4

11.	Solve in the set \mathbb{R} the equation $\frac{x^2+5x-9}{5x+15} - \frac{x}{x+3} = 1$. Solution:	L 0 1 2 3 4 5 6
12.	Consider the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = mx^2 + 2x + m$, $m \neq 0$. Determine the real values of m , such that the parabola representing the graph of the function f opens downward and its vertex lies on the axis of abscissas. <i>Solution:</i>	L 0 1 2 3 4