MINISTERUL EDUCAȚIEI, CULTURII ȘI CERCETĂRII AL REPUBLICII MOLDOVA

AGENŢIA NAŢIONALĂ	
PENTRU CURRICULUM Ş	1
EVALUARE	

Район/ Муниципий	
Место жительства	
Учебное заведение	
Фамилия, имя ученика	
Фамилия, имя ученика	

TECT № 1

КИМИХ

ТРЕНИРОВОЧНЫЙ ТЕСТ ЛИЦЕЙСКИЙ ЦИКЛ

Реальный профиль февраль 2021 года Время выполнения: 180 минут.

Необходимые материалы: ручка с пастой синего цвета.

Памятка для кандидата:

- Прочитай внимательно и аккуратно выполни каждое задание.
- Работай самостоятельно.

Желаем успехов!

Количество баллов
Κ ΑΠΙΙΙΑΛΤΡΑ ΜΩΠΠΑΡ

№														
1	Селен является незаменимым нутриентом, необходимым для здоровья сердечно- сосудистой системы, поддержания когнитивных функций, стимулирования выработки антител и укрепления иммунной системы. Напиши в свободных пространствах предложенных выражений букву B , если считаешь выражение верным, и букву H – если неверным.													
	 Этот элемент расположен в периодической системе в IV периоде, в VI группе побочной подгруппе (). Электронная конфигурация его атома: 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁴ (). 													
	3) В ядре атома этого элемента содержится 34 нейтрона ().													
	4) Образует высший оксид состава $\Theta_2()$.													
	5) Гидроксид этого элемента проявляет более выраженные кислотные свойства, чем серная кислота ().													
	6) В образце простого вещества, образованного атомами этого элемента, массой 7,9 г													
2	содержится 6,02 · 10 ²² атомов (). Противогололедные материалы снижают риск передвижения во время гололедицы за счет действия компонентов, способствующих таянию льда, и абразивов, уменьшающих эффект скольжения. Дополни свободные пространства таблицы для компонентов антигололедной смеси, состоящей из хлорида кальция и оксида кремния.													
	Оксид кремния Хлорид кальция 1 Тип химической связи	3 4 5 6	3 4 5 6											
	2 Тип кристаллической решетки		0											
	3 Электронная конфигурация одной из частиц, входящей в состав вещества													
3														
	Многообразие фейерверков обусловлено сочетанием различных световых, звуковых и световых эффектов, производимых пиротехническими инструментами. Одна из реакций, используемых в пиротехнике, проходит по следующей схеме: $H_2O + S + KClO_3 \rightarrow H_2SO_4 + Cl_2 + K_2SO_4$ Для этого процесса укажи степени окисления всех элементов, окислитель и восстановитель, процессы окисления и восстановления; определи коэффициенты методом электронного баланса и уравняй реакцию.													
		100												

Проблема обезвреживания токсичных компонентов выхлопных газов может быть решена с помощью каталитических реакций, способствующих взаимной нейтрализации экологически опасных веществ. Одна из таких реакций соответствует уравнению: кат. 2NO _(r) + 2CO _(r) ≠ N _{2(r)} + 2CO _{2(r)} + Q Для этой реакционной системы укажи тип каждого утверждения: обведи кружочком букву В если выражение верно, и букву Н если неверно. а) В Н При увеличении концентрации оксида азота (II) химическое равновесие смещается влево. б) В Н При повышении давления химическое равновесие смещается в сторону продуктов реакции.	L 0 1 2 3 4 5	L 0 1 2 3 4 5
 в) В Н При понижении температуры увеличивается выход прямой реакции. г) В Н При удалении оксида углерода (IV) из реакционной среды химическое равновесие смещается в сторону продуктов реакции. д) В Н Замена катализатора не оказывает влияния на смещение химического равновесия. 		
Для финишной обработки деревянных поверхностей рекомендуется использовать мяткую наждачную бумагу с содержанием оксида алюминия 200 г/м². Реши задачу. Гидроксид алюминия, полученный при взаимодействии раствора гидроксида натрия объемом 4 л с молярной концентрацией щелочи 1,5 моль/л, был подвергнут разложению. 1) Вычисли массу полученного оксида алюминия. 2) Аргументируй вычислениями, будет ли достаточно полученного оксида алюминия для изготовления 0,5 м² наждачной бумаги. Дано: Решение:	L 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	L 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

6	Дан ряд вещества:										
7		карактеристики из колонки А выбери напиши соответствующую букву в отве		L	L						
		A	Б	0	0						
	Характ	еристика вещества	Вещество	$\frac{1}{2}$	$\frac{1}{2}$						
		я конечным продуктом за крахмала	а) аминоуксусная кислота	3 4	3 4						
		лежит к гомологическому ряду формулой C_nH_{2n+2}	б) глюкоза	5	6						
		быть идентифицировано аммиачным ом оксида серебра	в) этин								
	4. Обладае	ет амфотерными свойствами	г) пропан								
	5. Получан	от окислением метанола									
	6. Примен	яется для сварки металлов	д) формальдегид								
8		вания респираторов и противогазо оторое является гомологом этанола и	• •	L	L						
		в свободном пространстве полуразвоторое соответствует данным характер		0 1 2 3	0 1 2 3						
	II. Дополни с	того соединения.	5	5							
		Полуразвернутая структурная формула	Название по систематической номенклатуре								
	изомер цепи										
	изомер положения										

 Даны вещества: <i>Na, Br2, HCl, HOH, KOH</i>. Выбери из этого ряда по одному <u>общему реагенту</u> органических веществ и напиши уравнения реакі веществ полуразвернутые структурные формулы. <i>Хлорэтан и пропановая кислота</i> а) → Фенол и этен фенол и этен 	ций, используя для органических	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
 б) — → Для получения чая «decaffe» чайные листья обраба E-1504, которая извлекает кофеин, а затем удаляе нагревания. Во избежание горького привкуса чая листьях не должен превышать 1 · 10⁻⁴ моль на 1 кг. Реши задачу. а) Определи молекулярную формулу добавки Е-этого соединения массой 8,8 г образовался оксид у и вода массой 7,2 г. Плотность паров этого вещесте б) Аргументируй расчетами, необходимо литермической обработке партию чая массой 100 кг, Дано: Решение: 	тывают специальной добавкой тся из конечного продукта путем состаток этой добавки в чайных -1504, если при сжигании пробы глерода (IV) объемом 8,96 л (н.у.) ва по водороду равна 44.	L 0 1 2 3 4 5 6 7 8 9 10 11 12	L 0 1 2 3 4 5 6 7 8 9 10 11 12
		12	

11	уровнем рН от б периода возможно щелочную или кис Реши задачу. Для 2000 л был исполн 1 г/мл и массовой а) Рассчитай рН пб б) Укажи, какой	приготовления разбавлен зован раствор азотной кис	е рН почвы в течению пьзованием удобрений, нного раствора азотной слоты объемом 31,5 мл	е вегетационного которые создают кислоты объемом с плотностью	L 0 1 2 3 4 5 6 7 8 9 10	L 0 1 2 3 4 5 6 7 8 9 10
	Ответ: а)	; 6)				
12	карбонат на II. Составь возмох	едложены растворы следул <i>птрия, нитрат аммония, х</i> кный вариант результатов лнив свободные пространо	клорид бария, сульфат з качественного анализа		L 0 1	L 0 1
	Анализируемый ион	Формула исследуемого вещества	Формула реактива для идентификации	Аналитический сигнал	3 4	2 3 4
	1) катион				5 6 7	5 6 7
	2) анион				8 9 10	8 9 10
		гветствии с данными табли в молекулярной, полной	* -	-	11 12 13	11 12 13

ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

Группы		- 73						
	I	П	III	IV	V	VI	VII	VIII
Периоды	1							
1	l водород							2 гелий По 1000 г
	H 1,0079	4 6	5 6		7	0	0 1	He 4,0026
2	3 литий ▼••	4 бериллий	5 бор	6 углерод	7 азот	8 кислород	9 фтор	10 неон
	Li 6,941	Be 9,01218	B 10,81	C 12,011	N 14,0067	O 15,9994	F 18,9984	Ne 20,179
3	11 натрий	12 магний	13 алюминий	14 кремний	15 фосфор	16 cepa	17 хлор	18 аргон
	Na 22,98977	Mg 24,305	Al 26,98154	Si 28,0855	P 30,97376	S 32,06	Cl 35,453	Ar 39,948
	19 калий	20 кальций	21 скандий	22 титан	23 ванадий	24 хром	25 марганец	26 железо 27 кобальт 28 никель
1	K 39,0983	Ca 40,08	44,9559 Sc	47,88 Ti	50,9415 V	51,996 Cr	54,938 Mn	55,847 Fe 58,9332 Co 58,69 Ni
4	29 медь	30 цинк	31 галлий	32 германий	33 мышьяк	34 селен	35 бром	36 криптон
	63,546 Cu	65,38 Zn	Ga 69,72	Ge 72,59	As 74,9216	Se 78,96	Br 79,904	Kr 83,80
	37 рубидий	38 стронций	39 иттрий	40 цирконий	41 ниобий	42 молибден	43 технеций	44 рутений 45 родий 46 палладий
5	Rb 85,4678	Sr 87,62	88,9059 Y	91,22 Zr	92,9064 Nb	95,94 Mo	[98] Tc	101,07 Ru 102,9055 Rh 106,42 Pd
3	47 серебро	48 кадмий	49 индий	50 олово	51 сурьма	52 теллур	53 иод	54 ксенон
	107,868 Ag	112,41 Cd	In 114,82	Sn 118,69	Sb 121,75	Te 127,60	I 126,9045	Xe 131,29
	55 цезий	56 барий	57* лантан	72 гафний	73 тантал	74 вольфрам	75 рений	76 осмий 77 иридий 78 платина
	Cs 132,9054	Ba 137,33	138,9055 La	178,49 Hf	180,948 Ta	183,85 W	186,207 Re	190,2 Os 192,22 Ir 195,08 Pt
6	79 золото	80 ртуть	81 таллий	82 свинец	83 висмут	84 полоний	85 астат	86 радон
	196,9665 Au	200,59 Hg	Tl 204,383	Pb 207,2	Bi 208,980	Po [209]	At [210]	Rn [222]
	87	88	89**	104	105	106	107	108 109 110
7	франций	радий	актиний	резерфордий	дубний	сиборгий	борий	хассий мейтнерий дармштадтий
	Fr [223]	Ra 226,025	227,028 Ac	[261] Rf	[262] Db	[263] Sg	[262] Bh	[267,13] Hs [168,14] Mt [281] Ds
				* [Гантаноилі	LT		

Лантаноилы

58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
церий	празеодим	неодим	прометий	самарий	европий	гадолиний	тербий	диспрозий	гольмий	эрбий	тулий	иттербий	лютеций
140,12	140,9077	144,24	[145]	150,36	151,96	157,25	158,9254	162,50	164,9304	167,26	168,9342	173,04	174.967

**Актиноиды

ſ	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
	торий	протактиний	уран	нептуний	плутоний	америций	кюрий	беркли	калифор-	эйнштей-	фермий	менделе-	нобелий	лоуренсий
	232,0381	231,0359	238,0389	237,0482	[244]	[243]	[247]	й [247]	ний [251]	ний [252]	[257]	вий [258]	[255]	[260]

РАСТВОРИМОСТЬ В ВОДЕ КИСЛОТ, ОСНОВАНИЙ И СОЛЕЙ																	
	H^+	NH ₄ ⁺	Li ⁺	Na ⁺	K ⁺	Ba ²⁺	Ca ²⁺	Mg^{2+}	Al ³⁺	Cr ³⁺	Zn ²⁺	Mn ²⁺	Fe ²⁺	Fe ³⁺	Pb ²⁺	Cu ²⁺	Ag ⁺
OH -		P↑	P	P	P	P	M	Н	Н	Н	Н	Н	Н	Н	Н	Н	-
F -	P	P	M	P	P	M	Н	Н	M	Н	P	P	Н	Н	Н	P	P
Cl -	P	P	P	P	P	P	P	P	P	P	P	P	P	P	M	P	Н
Br-	P	P	P	P	P	P	P	P	P	P	P	P	P	P	M	P	Н
Ι-	P	P	P	P	P	P	P	P	P	P	P	P	P	-	Н	-	Н
S ²⁻	P↑	P	P	P	P	P	P	P	-	-	Н	Н	Н	-	Н	Н	Н
SO ₃ ² -	P↑	P	P	P	P	Н	Н	Н	-	-	Н	-	Н	-	Н	Н	Н
SO ₄ ² -	P	P	P	P	P	Н	M	P	P	P	P	P	P	P	Н	P	M
CO ₃ ²⁻	P↑	P	P	P	P	Н	Н	Н	-	-	Н	Н	Н	-	Н	-	Н
SiO ₃ ²⁻	Н	-	P	P	P	Н	Н	Н	-	-	Н	Н	Н	-	Н	-	-
NO ₃ -	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
PO ₄ ³⁻	P	P	Н	P	P	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CH ₃ COO	P	P	P	P	P	P	P	P	P	-	P	P	P	-	P	P	P

^{*}Примечание: P – растворимое вещество, M – малорастворимое, H – практически нерастворимое; «-» - вещество не существует или разлагается

РЯД ЭЛЕКТРООТРИЦАТЕЛЬНОСТИ

F	O	N	Cl	Br	I	S	C	Se	P	Н	As	В	Si	Al	Mg	Ca	Na	K
4,0	3,5	3,07	3,0	2,8	2,5	2,5	2,5	2,4	2,1	2,1	2,0	2,0	1,8	1,5	1,2	1,04	0,9	0,8

РЯД НАПРЯЖЕНИЙ МЕТАЛЛОВ

Li K Ba Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H) Cu Hg Ag Pt Au

 $[\]uparrow$ - вещество выделяется в виде газа или распадается с выделением газа