|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           | S                                         | core                                      |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| 1 | Complete the proposed staten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nents using the expression equal to, less than, great                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           | L                                         | L                                         |
|   | mass of 31.  2) The number of electrons number of electrons in the secondaring 7 protons in the secondarian sec                     | in the electron shell of the pelectron shell of the polatile compound with he nucleus of the atom it ons carbon oxide (IV) the volume of 12,04 · 10 <sup>23</sup> the hydroxide of the chemical control of the c | chemical element with relative atomic the argon atom isthe                                                                                                                                                                                | 0<br>1<br>2<br>3<br>4<br>5                | 0<br>1<br>2<br>3<br>4<br>5                |
| 2 | Anti-dandruff serums have be processes of nutrition, hydratic Complete the proposed state elements, which enter into the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | calanced complexes of on and treatment of the ements: in column e composition of the anti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I - with the symbols of the chemical                                                                                                                                                                                                      | L<br>0<br>1<br>2<br>3                     | L<br>0<br>1<br>2<br>3<br>4                |
|   | I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | II                                                                                                                                                                                                                                        | 5                                         | 5                                         |
|   | The electronic theatom is $1s^22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | configuration of $s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The chemical formula of the higher oxide:                                                                                                                                                                                                 | 6<br>7<br>8                               | 6 7 8                                     |
|   | The electronic shell chemical element of . electrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The type of chemical bond in the compound with chlorine:                                                                                                                                                                                  |                                           |                                           |
|   | 3of the elem-<br>non-metal from the 3rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chemical formula of a compound with a polar covalent bond:                                                                                                                                                                                |                                           |                                           |
|   | 4of the situated in the periodic group 2, secondary subg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | table in the 4th period, group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Type of crystal lattice in the simple substance:                                                                                                                                                                                          |                                           |                                           |
| 3 | smoking. Quantitative analyst to the following scheme:  KNO <sub>2</sub> + KMnO <sub>4</sub> +  Establish for this process: the stable of the stable | is of potassium nitrite in $H_2SO_4 \rightarrow KNO_3$ ne degrees of oxidation the reducing processes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d for the dry processing of meat before a this additive can be realized according + MnSO <sub>4</sub> + K <sub>2</sub> SO <sub>4</sub> + H <sub>2</sub> O an of all elements, the oxidant and the s; determine coefficients by electronic | L<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | L<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7 |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |                                           |                                           |

| Nitric acid is one of the strongest acids, the oldest records of its use being associated with the experiments of alchemists and "aqua regia" (latin for "royal water"). One of the steps obtaining this acid corresponds to the following chemical equation: $ 4NH_{3(g)} + 5O_{2(g)} \stackrel{?}{\rightleftharpoons} 4NO_{(g)} + 6H_2O_{(g)} + Q $ Circle the letter T, if the statement is true and the letter F, if it is false.  a) T F The yield of the direct reaction increases when temperature decreases.  b) T F When the ammonia concentration decreases, the chemical equilibrium shift to the final products.  c) T F The pressure variation does not influence the chemical equilibrium.  d) T F When water is removed from the reaction medium, the chemical equilibrium shifts to the final products. | $ \begin{array}{c c} L \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $ | L<br>0<br>1<br>2<br>3<br>4                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|
| Calcium chloride has the property of gelling fruit paste and berries ensuring the necessa consistency for the preparation of marmalade. According to food safety standards to optimum content of this additive in marmalade is 300 mg/kg.  Solve the problem.  A sample of technical calcium oxide with a mass of 14 g, containing 20% impurities, we treated with 400 ml of hydrochloric acid solution with a molar concentration of acid of 1.5 mol /1.  a) Calculate the mass of calcium chloride obtained. b) Give arguments by calculations, if this amount of calcium chloride will be sufficient produce 50 kg of marmalade.  It is given:  Solution:  Solution:                                                                                                                                                 | L 0 1 2 3 4 5                                                 | L<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 |

| 6 | Write an <i>equation</i> case as reagent one 1) <i>a non-metal</i>                                                     | substances: BaCO <sub>3</sub> , Mg, NH <sub>3</sub> , Cu(OH) <sub>2</sub> of obtaining reaction for the substance of the substances from the proposed row                                                                                                                                                                                                                        | es indicated below, using in each v.                                                     | L<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | L<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 |
|---|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|
| 7 | help of pharmacolo                                                                                                     | natological formations, which in the ear gical preparations based on acetic acid, paces the letter T, if the statement is true  • belongs to the homologous series $C_nH_{2n-6}$ ()  • can be identified with iron (III) chlore  • is a carboxylic compound ()  • is formed by the hydrolysis of protein  • contains two hydroxyl groups ()  • is a product of photosynthesis () | phenol, glycerol. e and the letter F, if it is false: s with the general formula ride () | L<br>0<br>1<br>2<br>3<br>4<br>5<br>6           | L<br>0<br>1<br>2<br>3<br>4<br>5<br>6           |
| 8 | essential oils. <b>A.</b> Write the semi-day of 3-methylbutar  2) of an isomer of nomenclature: <b>B.</b> Complete the | of this compound and indicate its na                                                                                                                                                                                                                                                                                                                                             | me according to the systematic hat correspond to the indicated atoms as 3-methylbutanal. | L<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7      | L<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7      |

|                                                                                                                                                                                                                                                                      | nitric acid, sodium hydroxide, chlorine, copper (II) oxide.                                              | L<br>0                                    |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------|-------|
| proposed row, complete the blan                                                                                                                                                                                                                                      | an <u>organic substance</u> and one of the substances in the ak spaces in the proposed reaction schemes. | 1<br>2<br>3                               | 2     |
|                                                                                                                                                                                                                                                                      | the semi-developed structure formulas.                                                                   | 5                                         | 5     |
|                                                                                                                                                                                                                                                                      | →                                                                                                        | 6<br>7                                    | 7     |
| 2)+                                                                                                                                                                                                                                                                  | $\rightarrow$ + Cu + H <sub>2</sub> O                                                                    | 8                                         | 8     |
| 3)+                                                                                                                                                                                                                                                                  | - $HO-NO_2$ $\rightarrow$ +                                                                              |                                           |       |
| 4) H— C, OH +                                                                                                                                                                                                                                                        | → +                                                                                                      |                                           |       |
| pronounced bactericidal and virtuare well tolerated by the skin and affects the skin, being intended to <b>Solve the problem.</b> At the interaction of a sample metal, a gas with a volume of 2,2, a) Determine the molecular form b) Give arguments by calculation |                                                                                                          | L<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7 |       |
|                                                                                                                                                                                                                                                                      |                                                                                                          | 9<br>10<br>11<br>12                       | 1 1 1 |
|                                                                                                                                                                                                                                                                      |                                                                                                          |                                           |       |
|                                                                                                                                                                                                                                                                      |                                                                                                          |                                           |       |
|                                                                                                                                                                                                                                                                      |                                                                                                          |                                           |       |
|                                                                                                                                                                                                                                                                      |                                                                                                          |                                           |       |
|                                                                                                                                                                                                                                                                      |                                                                                                          |                                           |       |

| order to regulalized alkaline solution                        | late the needed acidity, the ser                                                                                                                       | I of the meat from which they are prepared. In mi-finished products are soaked for a while in is not recommended to use more concentrated ste of the product.                                         | L 0 1            |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 40 l, 8 ml of s ml were used. a) Calculate the                | sodium hydroxide solution with the pH of the prepared solution.                                                                                        | solution of sodium hydroxide with a volume of a 2% NaOH mass fraction and a density of 1 g / olution will be suitable for preparing meat for                                                          | 4 5 6            |
| It is given:                                                  |                                                                                                                                                        | Solution:                                                                                                                                                                                             | 9<br>10<br>11    |
|                                                               |                                                                                                                                                        |                                                                                                                                                                                                       |                  |
| Answer: a)                                                    | ; b)                                                                                                                                                   |                                                                                                                                                                                                       |                  |
| Pyrotechnics, technology of luminescent at <b>A.</b> Complete | from the Greek "pyr" - fire and preparing flammable mixture and sound effects. the blank spaces of the table for green color, the second - as a color. | d "technique" - mastery, is associated with the s, which burn spectacularly, creating special for two salts used in pyrotechnics: the first - to component of fire-fighting powders.  Analytic signal | 3                |
| 1. BaCl <sub>2</sub>                                          | a) for cation:b) for anion:                                                                                                                            | a)<br>b)                                                                                                                                                                                              | 4<br>5<br>6<br>7 |
| 2                                                             | a) for cation: b) for anion:                                                                                                                           | a) gas with a pungent odorous, colors the wet litmus paper in blue     b) colorless gas that causes turbidity lime water                                                                              | 8<br>9<br>10     |
| (CIE) and redu                                                | uced ionic (RIE) according with                                                                                                                        | n in molecular form (ME), completed ionic                                                                                                                                                             | 11 12            |

## SISTEMUL PERIODIC AL ELEMENTELOR CHIMICE

|                 | I                  | П                           | ш                  | IV                | v                               | VI                      | VII               |                               | VIII                              |
|-----------------|--------------------|-----------------------------|--------------------|-------------------|---------------------------------|-------------------------|-------------------|-------------------------------|-----------------------------------|
|                 | 1 Hidrogen         |                             |                    |                   |                                 |                         |                   | 2 Heliu                       |                                   |
| 1               | <b>H</b> 1,0079    |                             |                    |                   |                                 |                         |                   | <b>He</b> 4,0026              |                                   |
| 2               | 3 Litiu            | 4 Beriliu                   | 5 Bor              | 6 Carbon          | 7 Azot                          | 8 Oxigen                | 9 Fluor           | 10 Neon                       |                                   |
| 2               | <b>Li</b> 6,941    | <b>Be</b> 9,01218           | <b>B</b> 10,81     | <b>C</b> 12,011   | <b>N</b> 14,0067                | O 15,9994               | <b>F</b> 18,9984  | Ne 20,179                     |                                   |
| 3               | 11 Sodiu           | 12 Magneziu                 | 13 Aluminiu        | 14 Siliciu        | 15 Fosfor                       | 16 Sulf                 | 17 Clor           | 18 Argon                      |                                   |
| 3               | <b>Na</b> 22,98977 | <b>Mg</b> 24,305            | <b>Al</b> 26,98154 | <b>Si</b> 28,0855 | <b>P</b> 30,97376               | <b>S</b> 32,06          | <b>Cl</b> 35,453  | <b>Ar</b> 39,948              |                                   |
|                 | 19 Potasiu         | 20 Calciu                   | 21 Scandiu         | 22 Titan          | 23 Vanadiu                      | 24 Crom                 | 25 Mangan         | 26 Fier 2                     |                                   |
| 4               | <b>K</b> 39,0983   | <b>Ca</b> 40,08             | 44,9559 <b>Sc</b>  | 47,88 <b>Ti</b>   | 50,9415 <b>V</b>                | 51,996 <b>Cr</b>        | 54,938 <b>Mn</b>  |                               | 8,9332 <b>Co</b> 58,69 <b>Ni</b>  |
| 4               | 29 Cupru           | 30 Zinc                     | 31 Galiu           | 32 Germaniu       | 33 Arsen                        | 34 Seleniu              | 35 Brom           | 36 Kripton                    |                                   |
|                 | 63,546 <b>Cu</b>   | 65,38 <b>Zn</b>             | <b>Ga</b> 69,72    | <b>Ge</b> 72,59   | <b>As</b> 74,9216               | <b>Se</b> 78,96         | <b>Br</b> 79,904  | <b>Kr</b> 83,80               |                                   |
|                 | 37 Rubidiu         | 38 Stronţiu                 | 39 Ytriu           | 40 Zirconiu       | 41 Niobiu                       | 42 Molibden             | 43 Tehneţiu       | 44 Ruteniu 45                 |                                   |
| 5               | <b>Rb</b> 85,4678  | <b>Sr</b> 87,62             | 88,9059 <b>Y</b>   | 91,22 <b>Zr</b>   | 92,9064 <b>Nb</b>               | 95,94 <b>Mo</b>         | [98] <b>Tc</b>    |                               | 2,9055 <b>Rh</b> 106,42 <b>Pd</b> |
| )               | 47 Argint          | 48 Cadmiu                   | 49 Indiu           | 50 Staniu         | 51 Stibiu                       | 52 Telur                | 53 Iod            | 54 Xenon                      |                                   |
|                 | 107,868 <b>Ag</b>  | 112,41 <b>Cd</b>            | <b>In</b> 114,82   | <b>Sn</b> 118,69  | <b>Sb</b> 121,75                | <b>Te</b> 127,60        | <b>I</b> 126,9045 | <b>Xe</b> 131,29              |                                   |
|                 | 55 Ceziu           | 56 Bariu                    | 57* Lantan         | 72 Hafniu         | 73 Tantal                       | 74 Volfram              | 75 Reniu          | 76 Osmiu 7                    |                                   |
| 6               | <b>Cs</b> 132,9054 | <b>Ba</b> 137,33            | 138,9055 <b>La</b> | 178,49 <b>Hf</b>  | 180,948 <b>Ta</b>               | 183,85 <b>W</b>         | 186,207 <b>Re</b> |                               | 92,22 <b>Ir</b> 195,08 <b>Pt</b>  |
| 0               | 79 Aur             | 80 Mercur                   | 81 Taliu           | 82 Plumb          | 83 Bismut                       | 84 Poloniu              | 85 Astatiniu      | 86 Radon                      |                                   |
|                 | 196,9665 <b>Au</b> | 200,59 <b>Hg</b>            | <b>Tl</b> 204,383  | <b>Pb</b> 207,2   | <b>Bi</b> 208,9804              | <b>Po</b> [209]         | <b>At</b> [210]   | <b>Rn</b> [222]               | •                                 |
|                 | 87                 | 88                          | 89**               | 104               | 105                             | 106                     | 107               |                               | 09 110 Meitnerium Darmstadtium    |
| 7               | Franciu            | Radiu                       | Actiniu            | Rutherfordium     | Dubnium                         | Seaborgium              | Bohrium           |                               | _                                 |
|                 | <b>Fr</b> [223]    | <b>Ra</b> 226,0254          | 227,0278 <b>Ac</b> | [261] <b>Rf</b>   | [262] <b>Db</b>                 | [263] <b>Sg</b>         | [262] <b>Bh</b>   | [267,13] <b>Hs</b> [2         | 268,14] <b>Mt</b> [281] <b>Ds</b> |
| _               |                    |                             |                    |                   | *Lantanide                      |                         |                   |                               |                                   |
| 58 C            |                    |                             | Pm 62 Sm           |                   |                                 | Г <b>b</b> 66 <b>Dy</b> |                   | 8 Er 69 Tı                    |                                   |
| Ceriu<br>140,12 |                    | Neodim Prome<br>144,24 [145 |                    | 1                 | loliniu Terbiu<br>57,25 158,925 |                         |                   | Erbiu Tuliu<br>167,26 168,934 | ,                                 |
| 1-10,12         | 110,2077           | 1,27   [170                 | .1 150,50          |                   | **Actinide                      | . 102,50                | 101,2301          | 107,20   100,754              | 175,01                            |
| _               |                    |                             |                    |                   | 1 Icumac                        |                         |                   |                               |                                   |

Cm

Curiu

[247]

**Am** 96

Americiu

[243]

97 **Bk** 

Berkeliu

[247]

Cf

californiu

[251]

99

Es

Einsteiniu

[252]

98

100 **Fm** 

Fermiu

[257]

101

[258]

102

Nobeliu

[255]

Md

Mendeleviu

103 Lr

Lawrenciu

[260]

 $\mathbf{U}$ 

93

Np

Neptuniu 237,0482 **Pu** 95

Plutoniu

[244]

92

Uraniu

238,0389

Th

Protactiniu

231,0359

Toriu

232,0381

|                                 |                |                              | S               | OLU             | BIL            | ITAT             | EA A             | CIZII     | OR,              | BAZI             | ELOR      | , SĂR            | URIL             | OR Î             | N AP             | Ă                |                 |
|---------------------------------|----------------|------------------------------|-----------------|-----------------|----------------|------------------|------------------|-----------|------------------|------------------|-----------|------------------|------------------|------------------|------------------|------------------|-----------------|
|                                 | H <sup>+</sup> | NH <sub>4</sub> <sup>+</sup> | Li <sup>+</sup> | Na <sup>+</sup> | K <sup>+</sup> | Ba <sup>2+</sup> | Ca <sup>2+</sup> | $Mg^{2+}$ | Al <sup>3+</sup> | Cr <sup>3+</sup> | $Zn^{2+}$ | Mn <sup>2+</sup> | Fe <sup>2+</sup> | Fe <sup>3+</sup> | Pb <sup>2+</sup> | Cu <sup>2+</sup> | Ag <sup>+</sup> |
| OH -                            |                | S↑                           | S               | S               | S              | S                | P                | I         | I                | I                | I         | I                | I                | I                | I                | I                | -               |
| F -                             | S              | S                            | P               | S               | S              | P                | I                | I         | P                | I                | S         | S                | I                | I                | I                | S                | S               |
| Cl -                            | S              | S                            | S               | S               | S              | S                | S                | S         | S                | S                | S         | S                | S                | S                | P                | S                | I               |
| Br -                            | S              | S                            | S               | S               | S              | S                | S                | S         | S                | S                | S         | S                | S                | S                | P                | S                | I               |
| Ι-                              | S              | S                            | S               | S               | S              | S                | S                | S         | S                | S                | S         | S                | S                | -                | I                | -                | I               |
| S <sup>2-</sup>                 | S↑             | S                            | S               | S               | S              | S                | S                | S         | ı                | -                | I         | I                | I                | -                | I                | I                | I               |
| SO <sub>3</sub> <sup>2-</sup>   | S↑             | S                            | S               | S               | S              | I                | I                | I         | -                | -                | I         | -                | I                | -                | I                | I                | I               |
| SO <sub>4</sub> <sup>2-</sup>   | S              | S                            | S               | S               | S              | I                | P                | S         | S                | S                | S         | S                | S                | S                | I                | S                | P               |
| CO <sub>3</sub> <sup>2</sup> -  | S↑             | S                            | S               | S               | S              | I                | I                | I         | -                | -                | I         | I                | I                | -                | I                | -                | I               |
| SiO <sub>3</sub> <sup>2</sup> - | I              | -                            | S               | S               | S              | I                | I                | I         | -                | -                | I         | I                | I                | -                | I                | -                | -               |
| NO <sub>3</sub> -               | S              | S                            | S               | S               | S              | S                | S                | S         | S                | S                | S         | S                | S                | S                | S                | S                | S               |
| PO <sub>4</sub> <sup>3-</sup>   | S              | S                            | I               | S               | S              | I                | I                | I         | I                | I                | I         | I                | I                | I                | I                | I                | I               |
| CH <sub>3</sub> COO-            | S              | S                            | S               | S               | S              | S                | S                | S         | S                | -                | S         | S                | S                | -                | S                | S                | S               |

Notă: S – substanță solubilă, I – insolubilă, P – puțin solubilă; «-» substanța nu există sau se descompune în apă; ↑ - substanța se degajă sub formă de gaz sau se descompune cu degajare de gaz

## SERIA ELECTRONEGATIVITĂŢII

|     |     |      |     |     |     |     |     |     |     |     |     |     | -   |     |     |      |     |     |     |
|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|
| F   | 0   | N    | Cl  | Br  | I   | S   | C   | Se  | P   | H   | As  | В   | Si  | Al  | Mg  | Ca   | Li  | Na  | K   |
| 4,0 | 3,5 | 3,07 | 3,0 | 2,8 | 2,5 | 2,5 | 2,5 | 2,4 | 2,1 | 2,1 | 2,0 | 2,0 | 1,8 | 1,5 | 1,2 | 1,04 | 1,0 | 0,9 | 0,8 |

## SERIA TENSIUNII METALELOR

Li K Ba Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H) Cu Hg Ag Pt Au