	Item		
I. FOR ITEMS 1-3 PROVIDE SHORT ANSWERS ACCORDING TO THE GIVEN REQUIREMENTS			
	Continue the following sentences as to make true statements: a) In a uniformly accelerated rectilinear motion the acceleration of the body is \qquad b) When heating a mole of ideal gas isobarically the gas volume \qquad c) A neutral body that cedes electrons, is \qquad charged. d) When connecting two capacitors in series, the electrical capacity of the group is always \qquad than the capacity of each capacitor separately. e) The mass of the photon at rest is. \qquad		L 0 1 2 3 4 5
2	Indicate (by using arrows) the correspondence between the following physical quantities and the physical units they represent:		
3	State whether the following statements are true or false and circle the right answer: a) The magnitude of the material point acceleration vector in uniform rectilinear motion is less than zero. b) The kinetic energy of the body does not depend on its speed. c) In the isothermal compression of the ideal gas, its internal energy variation is zero. d) The induced electromotive force changes according to the variation of the magnetic flux through a coil. e) An electron is emitted at β decay.		
II. IN EXERCISES 4-9 ANSWER THE QUESTIONS OR SOLVE THE TASKS, AND PROVIDE ARGUMENTS IN THE SPACES BELOW:			
4 	gas, at the same pressure but having different volumes. Identify the relationships between the internal energies of the gas in each case by marking on figures the gas internal energy in the cylinder using numbers from 1 to 4,1 corresponds to the highest energy and 4 - to the lowest.		0
5	This task is composed of two statements, linked by the conjunction "because". Indicate if the statements are true (by writing T), or false (by writing F), as well as whether there is any "cause-effect" relationship between them (by writing "yes" or "no"). The momentum of a material point is equal to the half-product between the mass and the square of speed because the variation of the momentum of a material point is equal to the impulse of the net force.		

6	Monochromatic radiation with a wavelength of 331.5 nm falls on the metallic cathode of a photoelectric cell. To stop the photocurrent, a stopping voltage of 2.0 V must be applied. Determine the work function of the metal. SOLUTION	$\begin{aligned} & \hline \mathrm{L} \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	 0 1 2 3 4 5
7	Two identical plate capacitors with the distance between the plates equal to 1.77 mm , filled with paraffin ($\varepsilon_{\mathrm{r}}=2.2$), are connected in parallel. Determine the plate area of a capacitor if the equivalent capacity of the group is 0.22 nF . SOLUTION	$\begin{aligned} & \mathrm{L} \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	L 0 1 2 3 4
8	The net force acting on a body with a mass of 1.5 kg changes according to the distance travelled along this force (see the figure below). What is the maximum force acted on the body, if it is known that the maximum speed reached by the body during its movement was equal to $12 \mathrm{~m} / \mathrm{s}$? Initially the body was at rest. SOLUTION	$\begin{aligned} & \hline \mathrm{L} \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	L 0 1 2 3 4 5

9	An alternating current with an intensity of 4 A flows through the primary coil of an ideal transformer, which has 330 turns. How many turns does the secondary coil of the transformer have, if the intensity of the current flowing through it is equal to 55 A? Mention whether this is a step-up or step-down transformer. SOLUTION	0	1

Physical constants

Elementary charge $e=1,60 \cdot 10^{-19} \mathrm{C}$
Electron rest mass $m_{e}=9,11 \cdot 10^{-31} \mathrm{~kg}$
Light speed in vacuum $c=3,00 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$
Gravitational constant $K=6,67 \cdot 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$ Electric constant $\varepsilon_{0}=8,85 \cdot 10^{-12} \mathrm{~F} / \mathrm{m}$

Avogadro's constant $N_{A}=6,02 \cdot 10^{23} \mathrm{~mol}^{-1}$ Boltzmann's constant $k=1,38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$ Ideal gas constant $R=8,31 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
Planck's constant $h=6,63 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Coulomb's force constant $k_{e}=9,00 \cdot 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$

MECHANICS

$$
\begin{gathered}
x=x_{0}+v_{0 x} t ; x=x_{0}+v_{0 x} t+\frac{a_{x} t^{2}}{2} ; v_{x}=v_{0 x}+a_{x} t ; v_{x}^{2}-v_{0 x}^{2}=2 a_{x} s_{x} ; \\
v=\frac{1}{T} ; \omega=\frac{2 \pi}{T} ; v=\omega r ; \omega=2 \pi \nu ; a_{c}=\frac{v^{2}}{r} . \\
\vec{F}=m \vec{a} ; \vec{F}_{12}=-\vec{F}_{21} ; F=K \frac{m_{1} m_{2}}{r^{2}} ; \vec{F}_{e}=-k \Delta \vec{l} ; F_{f}=\mu N ; F_{A}=\rho_{0} V g ; p=\rho g h ; M=F d . \\
\vec{p}=m \vec{v} ; \Delta \vec{p}=\vec{F} \Delta t ; L_{\text {mec. }}=F s \cos \alpha ; P=\frac{L}{t} ; E_{k}=\frac{m v^{2}}{2} ; L_{12}=E_{k 2}-E_{k 1} ; E_{p}=m g h ; E_{p}=\frac{k x^{2}}{2} \\
L_{12}=-\left(E_{p 2}-E_{p 1}\right) ; x=A \sin \left(\omega t+\varphi_{0}\right) ; T=2 \pi \sqrt{\frac{l}{g}} ; T=2 \pi \sqrt{\frac{m}{k}} ; \lambda=v T ; y=A \sin \left(\omega t-k x+\varphi_{0}\right) .
\end{gathered}
$$

MOLECULAR PHYSICS AND THERMODYNAMICS

$$
p=\frac{1}{3} m_{0} n \overline{v^{2}}=\frac{2}{3} n \bar{\varepsilon}_{t r .} ; \bar{\varepsilon}_{t r .}=\frac{3}{2} k T ; p=n k T ; v_{T}=\sqrt{\frac{3 R T}{M}} ; p V=v R T ; v=\frac{m}{M} ; R=k N_{A} ; M=m_{0} N_{A} ;
$$

$$
p V=\text { const. }, T=\text { const. } ; \frac{p}{T}=\text { const. }, V=\text { const. } ; \frac{V}{T}=\text { const. }, p=\text { const. } ; \frac{p V}{T}=\text { const. }, m=\text { const. }
$$

$$
U=\frac{3}{2} \frac{m}{M} R T ; L=p \Delta V ; Q=c m \Delta T ; Q=\Delta U+L ; \eta=\frac{Q_{1}-Q_{2}}{Q_{1}} ; \eta_{\max .}=\frac{T_{1}-T_{2}}{T_{1}}
$$

ELECTRODYNAMICS

$$
\begin{gathered}
F=k_{e} \frac{\left|q_{1}\right|\left|q_{2}\right|}{\varepsilon_{r} r^{2}} ; k_{e}=\frac{1}{4 \pi \varepsilon_{0}} ; \vec{E}=\frac{\vec{F}}{q} ; E=\frac{U}{d} ; \varphi=\frac{W}{q} ; \varphi=\frac{k q}{r} ; \Delta \varphi=U=\frac{L}{q} ; \\
C=\frac{q}{U} ; C=\frac{\varepsilon_{0} \varepsilon_{r} S}{d} ; C_{P}=\sum_{i=1}^{n} C_{i} ; \frac{1}{C}=\sum_{i=1}^{n} \frac{1}{C_{i}} \\
I=\frac{\Delta q}{\Delta t} ; I=\frac{U}{R} ; I=\frac{\varepsilon}{R+r} ; I_{s c}=\frac{\varepsilon}{r} ; R=\rho \frac{l}{S} ; R_{\mathrm{s}}=\sum_{i=1}^{n} R_{i} ; \frac{1}{R_{\mathrm{p}}}=\sum_{i=1}^{n} \frac{1}{R_{i}} ; L=I U t ; Q=I^{2} R t ; P=I U ; \eta=\frac{P_{u}}{P_{t}} ; \\
R_{S}=\frac{R_{A}}{n-1} ; R_{a}=(n-1) R_{V} ; F_{m}=I B l \sin \alpha ; F_{L}=q v B \sin \alpha ; \Phi=B S \cos \alpha ; \varepsilon_{i}=-\frac{\Delta \Phi}{\Delta t} ; \\
W_{e}=\frac{C U^{2}}{2} ; q=q_{m} \cos \left(\omega t+\varphi_{0}\right) ; I=\frac{I_{m}}{\sqrt{2}} ; U=\frac{U_{m}}{\sqrt{2}} ; \frac{I_{2}}{I_{1}} \approx K=\frac{N_{1}}{N_{2}}=\frac{U_{1}}{U_{2}} ; X_{C}=\frac{1}{\omega C} ; X_{L}=\omega L ; T=2 \pi \sqrt{L C} ; \\
\Delta= \pm 2 m \cdot \frac{\lambda}{2} ; \Delta= \pm(2 m+1) \cdot \frac{\lambda}{2} ; d \sin \varphi= \pm m \lambda ; d=\frac{l}{N}=\frac{1}{n}
\end{gathered}
$$

MODERN PHYSICS

$\varepsilon_{p h}=\frac{h c}{\lambda} ; m_{p h}=\frac{h}{c \lambda} ; p_{p h}=\frac{h}{\lambda} ; h \nu=L_{e}+\frac{m v_{\text {max }}^{2}}{2} ; v=\frac{c}{\lambda} ; h \nu=E_{n}-E_{m} ;{ }_{Z}^{A} \mathrm{X} \rightarrow{ }_{Z-2}^{A-4} \mathrm{Y}+{ }_{2}^{4} \mathrm{He} ;{ }_{Z}^{A} \mathrm{X} \rightarrow{ }_{Z+1}^{A} \mathrm{Y}+{ }_{-1}^{0} e ;$

$$
1 \mathrm{eV}=1,60 \cdot 10^{-19} \mathrm{~J} ; 1 \mathrm{u}=1,66 \cdot 10^{-27} \mathrm{~kg} .
$$

