| No. | Item                                                                                                                                                    | Sc      | ore     |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--|
|     | I. FOR ITEMS 1-3 PROVIDE SHORT ANSWERS ACCORDING TO THE GIVEN<br>REQUIREMENTS                                                                           |         |         |  |
| 1   | Complete the following sentences as to make true statements:                                                                                            |         | L       |  |
|     | a) When throwing a body vertically upwards, its acceleration isto the                                                                                   |         | 0       |  |
|     | initial velocity.<br>b) Two identical bodies at thermal equilibrium have particle thermal speeds                                                        |         | 2       |  |
|     | <ul> <li>b) I wo identical bodies at thermal equilibrium haveparticle thermal speeds.</li> <li>c) The electric charge sign of an electron is</li> </ul> |         | 4       |  |
|     | d) An electron is acted by a non-zero force from a magnetic field if its velocity is not                                                                |         | 6       |  |
|     | to the magnetic field induction.                                                                                                                        |         | 0       |  |
|     | e) The photon charge is                                                                                                                                 | 0<br>10 | 0<br>10 |  |
| 2   | Indicate (by using arrows) the correspondence between the following physical                                                                            |         | L       |  |
|     | quantities and the physical units they represent:                                                                                                       | 0       | 0       |  |
|     | Force pF                                                                                                                                                | 2       | 2       |  |
|     | Momentum C                                                                                                                                              | 2<br>1  | 2<br>1  |  |
|     | Amount of substance kg                                                                                                                                  | 4       | 4       |  |
|     | Electric charge mN                                                                                                                                      | 6       | 6       |  |
|     | Relativistic mass kg·m/s                                                                                                                                | 8       | 8       |  |
|     | mol                                                                                                                                                     | 10      | 10      |  |
| 3   | State whether the following statements are true or false and circle the right answer:                                                                   | L       | L       |  |
|     | a) In uniform circular motion the velocity (vector) does not change direction. T F                                                                      | 0       | 0       |  |
|     | <b>b)</b> The duration of an oscillation is more than twice the period of oscillations. <b>T F</b>                                                      |         | 2       |  |
|     | c) Molecules of ideal gas do not interact until they collide. T F                                                                                       | 4       | 4       |  |
|     | d) Light interference does not occur for coherent white light. T F                                                                                      | 8       | 8       |  |
|     | e) The mass of a particle does not change when passing from a moving to a fixed                                                                         | 10      | 10      |  |
|     | reference frame, even if the speeds are relativistic. T F                                                                                               |         | 10      |  |
|     | II. IN EXERCISES 4-9 ANSWER THE QUESTIONS OR SOLVE THE TASKS, AN<br>PROVIDE ARGUMENTS IN THE SPACES BELOW:                                              | D       |         |  |
| 4   | A small ball attached to a wire rotates in                                                                                                              | L       | L       |  |
|     | a vacuum in a vertical plane. Indicate on                                                                                                               | 0       | 0       |  |
|     | the figure the forces acting on it, the resultant of the forces and the                                                                                 | 1       | 1       |  |
|     | acceleration of the ball in the given                                                                                                                   | 2       | 2       |  |
|     | position.                                                                                                                                               | 2       | 2       |  |
|     |                                                                                                                                                         | 5       | 5       |  |
|     |                                                                                                                                                         | 4       | 4       |  |
| 5   | Determine the energy of a photon that has wavelength 0.663 $\mu$ m.                                                                                     | L       | L       |  |
|     | SOLUTION                                                                                                                                                | 0       | 0       |  |
|     |                                                                                                                                                         | 1       | 1       |  |
|     |                                                                                                                                                         | 2       | 2       |  |
|     |                                                                                                                                                         | 3       | 3       |  |
|     |                                                                                                                                                         | 4       | 4       |  |
|     |                                                                                                                                                         | 5       | 5       |  |
|     |                                                                                                                                                         | 5       | 5       |  |
|     |                                                                                                                                                         |         |         |  |
|     |                                                                                                                                                         |         |         |  |
|     |                                                                                                                                                         |         |         |  |
|     |                                                                                                                                                         |         |         |  |

| 6 | An air parallel plate capacitor is connected to a constant voltage source. How will the accumulated charge on the capacitor plates change if the distance between them doubles? SOLUTION                                                                                 | L<br>0<br>1<br>2<br>3<br>4<br>5<br>6 | L<br>0<br>1<br>2<br>3<br>4<br>5<br>6 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| 7 | A body moves under the action of a constant force, so its kinetic energy changes from 100 J to 400 J. Determine the value of the force if the distance travelled by the body is 20 m. SOLUTION                                                                           | L<br>0<br>1<br>2<br>3<br>4<br>5<br>6 | L<br>0<br>1<br>2<br>3<br>4<br>5<br>6 |
| 8 | A constant amount of ideal gas was cooled isobarically<br>from its initial temperature of 500 K, so that its volume<br>decreased twofold.<br>a) Represent this process in the $pV$ diagram;<br>b) Determine the final temperature of the gas.<br>SOLUTION<br>p<br>0<br>V | a)<br>L<br>0<br>1<br>2<br>3          | a)<br>L<br>0<br>1<br>2<br>3          |

| 9 | An elastic pendulum performs 60 small oscillations in 1.0 min. When the mass of the                                                                                                                                                                                                                                                                 | b)<br>L<br>0<br>1<br>2<br>3<br>4<br>5                                                                                                                       | b)<br>L<br>0<br>1<br>2<br>3<br>4<br>5                                                                                                                       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9 | An elastic pendulum performs 60 small oscillations in 1.0 min. When the mass of the suspended body changed, the period decreased twofold. Neglecting air resistance determine:<br>a) the initial frequency of the oscillations;<br>b) how many times has the mass of the pendulum changed, if the spring has the same elastic constant?<br>SOLUTION | <ul> <li>a)</li> <li>L</li> <li>0</li> <li>1</li> <li>2</li> <li>3</li> <li>4</li> <li>5</li> <li>b)</li> <li>L</li> <li>0</li> <li>1</li> <li>2</li> </ul> | <ul> <li>a)</li> <li>L</li> <li>0</li> <li>1</li> <li>2</li> <li>3</li> <li>4</li> <li>5</li> <li>b)</li> <li>L</li> <li>0</li> <li>1</li> <li>2</li> </ul> |
|   |                                                                                                                                                                                                                                                                                                                                                     | 3 4                                                                                                                                                         | 34                                                                                                                                                          |



11 A rod moves on two parallel rails with constant speed under the action of a horizontal force of 3.0 N in a homogeneous vertical magnetic field of inductance 300 mT (see figure above). What is the speed of movement of the rod if its length is 1.0 m and the resistance is  $R=0.03 \Omega$ . You will neglect the electrical resistance of the rails, the rod and the connecting wires, the frictional force between the rails and the rod. Indicate the direction of the electric current in the moving rod. SOLUTION



| 12 | You have a voltage source with unknown internal resistance and emf, a resistor with known resistance on ideal ammeter and connecting wires. You need to determine the value of the |         |         |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---|
|    | internal resistance of the source, if the ammeter can also measure large current values                                                                                            |         |         |   |
|    | including short circuit.                                                                                                                                                           |         |         |   |
|    | a) Draw the circuit diagram and describe now to determine the internal resistance of the source;                                                                                   |         |         |   |
|    | b) Derive the calculation formula.                                                                                                                                                 | a)      | a)      |   |
|    | SOLUTION                                                                                                                                                                           | L       | L       |   |
|    |                                                                                                                                                                                    | 0       | 0       |   |
|    |                                                                                                                                                                                    | 1       | 1       |   |
|    |                                                                                                                                                                                    | 2       | 2       |   |
|    |                                                                                                                                                                                    | 3       | 3       |   |
|    |                                                                                                                                                                                    | 4       | 4       |   |
|    |                                                                                                                                                                                    | 5       | 5       |   |
|    |                                                                                                                                                                                    | 6       | 6       |   |
|    |                                                                                                                                                                                    | 7       | 7       |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    | 1 \     | 1 \     |   |
|    |                                                                                                                                                                                    | b)<br>1 | b)<br>т |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    | 1       | 1       |   |
|    |                                                                                                                                                                                    | 1<br>2  | 1<br>2  |   |
|    |                                                                                                                                                                                    | 2       | 2       |   |
|    |                                                                                                                                                                                    | 5       | 5       |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         |   |
|    |                                                                                                                                                                                    |         |         | 1 |

## ANNEX Physical constants

| Elementary charge $e = 1,60 \cdot 10^{-19}$ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Avogadro's constant $N_A = 6,02 \cdot 10^{23} \text{ mol}^{-1}$                                                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Electron rest mass $m_e = 9,11 \cdot 10^{-31} \text{ kg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Boltzmann's constant $k = 1,38 \cdot 10^{-23} \text{ J/K}$                                                                |  |
| Light speed in vacuum $c = 3,00 \cdot 10^8 \text{ m/s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ideal gas constant $R = 8,31 \text{ J/(mol \cdot K)}$                                                                     |  |
| Gravitational constant $K = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Planck's constant $h = 6,63 \cdot 10^{-34} \text{ J} \cdot \text{s}$                                                      |  |
| Electric constant $\varepsilon_0 = 8,85 \cdot 10^{-12} \text{ F/m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coulomb's force constant $k_e = 9,00 \cdot 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$                                    |  |
| MECH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANICS                                                                                                                     |  |
| $x = x_0 + v_{0x}t; \ x = x_0 + v_{0x}t + \frac{a_x t^2}{2}; \ v_x = v_{0x} + a_xt; \ v_x^2 - v_{0x}^2 = 2a_xs_x; \ v = \frac{1}{T}; \ \omega = \frac{2\pi}{T}; \ v = \omega r; \ \omega = 2\pi v; \ a_c = \frac{v^2}{r}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                           |  |
| $\vec{F} = m\vec{a} \; ; \; \vec{F}_{12} = -\vec{F}_{21} \; ; \; F = K \frac{m_1 m_2}{r^2} \; ; \; \vec{F}_e = -k\Delta \vec{l} \; ; \; F_f = \mu N \; ; \; F_A = \rho_0 Vg \; ; \; p = \frac{F}{S} \; ; \; p = \rho gh \; ; \; M = Fd \; .$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |  |
| $\vec{p} = m\vec{v}$ ; $\Delta \vec{p} = \vec{F}\Delta t$ ; $L_{mec.} = Fs\cos\alpha$ ; $P = \frac{L}{t}$ ; $E_c = \frac{mv^2}{2}$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $L_{12} = E_{c2} - E_{c1}; E_p = mgh; E_p = \frac{kx^2}{2}; L_{12} = -(E_{p2} - E_{p1});$                                 |  |
| $x = A\sin(\omega t + \varphi_0); T = 2\pi \sqrt{\frac{l}{g}}; T = 2\pi \sqrt{\frac{m}{k}}; \lambda = vT;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                           |  |
| MOLECULAR PHYSICS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND THERMODYNAMICS                                                                                                         |  |
| $p = \frac{1}{3}m_0n\overline{v^2} = \frac{2}{3}n\overline{\varepsilon}_{tr.}; \ \overline{\varepsilon}_{tr.} = \frac{3}{2}kT; \ p = nkT; \ v_T = \sqrt{\frac{3RT}{M}}; \ pV = vRT; \ v = \frac{m}{M} = \frac{N}{N_A}; \ R = kN_A; \ M = m_0N_A;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                           |  |
| $pV = const.$ , $T = const.$ ; $\frac{p}{T} = const.$ ; $V = const.$ ; $\frac{V}{T} = const.$ ; $p = const.$ ; $\frac{pV}{T} = const.$ , $m = const.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                           |  |
| $U = \frac{3}{2} \frac{m}{M} RT; \ L = p\Delta V; \ Q = cm\Delta T; \ Q = C_M v\Delta T; \ c_p - c_V = \frac{R}{M}; \ Q_V = \lambda_V m; \ Q = qm; \ Q = \Delta U + L; \ \eta = \frac{Q_1 -  Q_2 }{Q_1};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |  |
| $\eta_{\max} = \frac{T_1 - T_2}{T_1}; \ \varphi = \frac{\rho_a}{\rho_s} = \frac{p_a}{p_s}; \ \sigma = \frac{F_s}{l};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $h = \frac{4\sigma}{\rho g d};  \frac{F}{S} = E \frac{\Delta l}{l};  l = l_0 (1 + \alpha t);$                             |  |
| ELECTROD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YNAMICS                                                                                                                   |  |
| $F = \frac{k_e}{\varepsilon_r} \frac{ q_1 q_2 }{r^2}; E = \frac{k_e}{\varepsilon_r} \frac{ q }{r^2}; k_e = \frac{1}{4\pi\varepsilon_0}; \vec{E} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $=\frac{\vec{F}}{q_0}$ ; $E = \frac{U}{d}$ ; $\varphi = \frac{W}{q_0}$ ; $\varphi = \frac{kq}{r}$ ; $U = \frac{L}{q_0}$ ; |  |
| $C = rac{q}{U} \ ; \ C = rac{\mathcal{E}_0 \mathcal{E}_r S}{d} \ ; \ \ C_p = \sum_{i=1}^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $C_i \ ; \ \frac{1}{C_s} = \sum_{i=1}^n \frac{1}{C_i} \ ; \ \ W_e = \frac{CU^2}{2}$                                       |  |
| $I = \frac{\Delta q}{\Delta t}; I = \frac{U}{R}; I = \frac{\varepsilon}{R+r}; I_{s.c.} = \frac{\varepsilon}{r}; R = \rho \frac{l}{S}; R_s = \sum_{i=1}^{n} P_{s.c.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $R_i; \frac{1}{R_p} = \sum_{i=1}^n \frac{1}{R_i}; L = IUt; Q = I^2Rt; P = IU; \eta = \frac{L_u}{L_t};$                    |  |
| $F_m = IBl\sin\alpha;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $F_L = qvB\sin\alpha ;$                                                                                                   |  |
| $\Phi = BS \cos \alpha \; ; \; \varepsilon_i = -\frac{\Delta \Phi}{\Delta t} \; ; \; \Phi = Li; \; \varepsilon_{ai} = -L\frac{\Delta i}{\Delta t} \; ; \; W_m = \frac{LI^2}{2} \; ; \; \; q = q_m \cos\left(\omega t + \varphi_0\right); \\ I = \frac{I_m}{\sqrt{2}} \; ; \; U = \frac{U_m}{\sqrt{2}} \; ; \; U =$ |                                                                                                                           |  |
| $\frac{I_2}{I_1} \approx K = \frac{N_1}{N_2} = \frac{U_1}{U_2}; \ X_C = \frac{1}{\omega C}; \ X_L = \omega L; \ T = 2\pi\sqrt{LC};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           |  |
| $\Delta_{\max} = \pm 2m \cdot \frac{\lambda}{2} ; \ \Delta_{\min} = \pm (2m+1) \cdot \frac{\lambda}{2} ; \ d\sin\varphi = \pm m\lambda ; \ d = \frac{l}{N} = \frac{1}{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |  |
| MODERN PHYSICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |  |
| $\tau = \frac{\tau_0}{\sqrt{1 - v^2/c^2}}; \ l = l_0 \sqrt{1 - v^2/c^2}; \ m = \frac{m_0}{\sqrt{1 - v^2/c^2}}; \ \vec{p} = \frac{m_0 \vec{v}}{\sqrt{1 - v^2/c^2}} = \frac{E}{c^2} \vec{v}; \ E = mc^2; \ E_c = (m - m_0)c^2;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                           |  |
| $\varepsilon_{ph} = \frac{hc}{\lambda}; \ p_{ph} = \frac{h}{\lambda}; \ hv = L_e + \frac{mv_{\text{max}}^2}{2}; \ v = \frac{c}{\lambda}; \ hv = E_n - E_m; \\ N = N_0 e^{-\lambda t}; \ \lambda = \frac{\ln 2}{T_{1/2}}; \ N = N_0 2^{-\frac{t}{T_{1/2}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                           |  |
| ${}^{A}_{Z}X \rightarrow {}^{A-4}_{Z-2}Y + {}^{4}_{2}He; {}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + {}^{0}_{-1}e; 1 \text{ eV} = 1,60 \cdot 10^{-19} \text{ J}; 1 \text{ u} = 1,66 \cdot 10^{-27} \text{ kg}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                           |  |