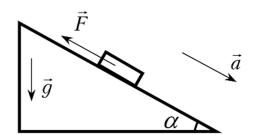
Nr.	Items	Sco	ore
	I POUR LES ITEMS 1-3 DONNEZ UNE RÉPONSE BRÈVE SELON LES TÂC		
	PROPOSÉES:	•	
1	Complétez les affirmations suivantes pour qu'elles soient vraies:	L	L
	a) Lorsqu'un corps est lancé verticalement vers le haut, son accélération est	0	0
	à sa vitesse initiale.	2	2
	b) Deux corps identiques en équilibre thermique ont des vitesses thermiques de	4	4
	particules	6	6
	c) Le signe de la charge électrique d'un électron est	8	8
	d) Un électron est soumis à une force non nulle exercée par un champ magnétique	10	10
	si sa vitesse n'est pas à l'induction du champ magnétique.	10	10
	e) La charge du photon est		
2	Reliez (par des flèches) les grandeurs physiques suivantes aux unités qui les	L	L
	expriment:	0	0
	Force pF	2	2
	Quantité de mouvement C Quantité de substance kg	4	4
	Charge électrique mN	6	6
	Masse relativiste kg·m/s		
	mol	8	8
		10	10
3	Indiquez si les affirmations suivantes sont vraies (V) ou fausses (F):	L	L
	a) Dans un mouvement circulaire uniforme, le vecteur vitesse ne	0	0
	change pas de direction. V F	2	2
	b) La durée d'une oscillation est plus de deux fois supérieure à la période des oscillations. V F	4	4
	c) Les molécules d'un gaz parfait n'interagissent pas jusqu'à ce qu'elles	6	6
	entrent en collision V F	8	8
	d) L'interférence ne se produit pas pour une lumière blanche cohérente. V F	_	
	e) La masse d'une particule ne change pas lorsqu'elle passe d'un un	10	10
	référentiel mobile à un référentiel fixe, même si les vitesses sont		
	relativistes. V F		
١,	II. POUR LES ITEMS 4-9 RÉPONDEZ AUX QUESTIONS OU PROPOSEZ U SOLUTION, EN ÉCRIVANT LES ARGUMENTS DANS LES ESPACES RÉSEI		١.
		_	-
4	Une petite sphère attachée à un fil tourne dans le vide dans un plan vertical.	$\begin{bmatrix} L \\ 0 \end{bmatrix}$	$\begin{bmatrix} L \\ 0 \end{bmatrix}$
	Indiquez sur le dessin, dans la position	1	_
	donnée, les forces qui agissent sur elle, la	2	1 2
	résultante des forces et l'accélération de la	3	3
	sphère.	4	4
5	Déterminez l'énergie d'un photon ayant une longueur d'onde de 0,663 μm.		
	RÉSOLUTION	L	L
		0	0
		1	1
		2	2
		3	3
		4	4
		5	5

6	Un condensateur plan à air est connecté à une source de tension constante. Comment la charge accumulée sur les plaques du condensateur va-t-elle changer si la distance entre elles double? RÉSOLUTION	L 0 1 2 3 4 5 6	L 0 1 2 3 4 5 6
7	Un corps se déplace sous l'action d'une force constante, de sorte que son énergie cinétique se modifie de 100 J à 400 J. Déterminez la valeur de la force si la distance parcourue par le corps est de 20 m. L'angle entre les vecteurs force et vitesse est nul. RÉSOLUTION	L 0 1 2 3 4 5 6	L 0 1 2 3 4 5 6
8	Une quantité constante de gaz parfait a été refroidie de manière isobare à partir de sa température initiale de 500 K, de sorte que son volume a été diminué de deux fois. a) Représentez le processus donné dans le diagramme pV ;	a) L 0 1 2	a) L 0 1 2
	b) Déterminez la température finale du gaz. RÉSOLUTION 0 V	3	3

		b) L 0 1 2 3 4 5	b) L 0 1 2 3 4 5
9	Un pendule élastique effectue 60 petites oscillations dans 1,0 minute. Lorsque la masse du corps suspendu change, la période diminue de deux fois. En négligeant les forces de résistance, déterminez: a) la fréquence initiale des oscillations. b) combien de fois la masse du pendule a-t-elle changé, si le ressort a la même constante élastique? RÉSOLUTION	a) L 0 1 2 3 4 5	a) L 0 1 2 3 4 5
		b) L 0 1 2 3 4	b) L 0 1 2 3 4


III. DANS LES ITEMS 10 -12 ÉCRIVEZ LA SOLUTION COMPLÈTE DES PROBLÈMES PROPOSÉS:

Un corps de masse 1,0 kg se déplace sur un plan incliné, sans vitesse initiale, sous l'action d'une force constante de 1,0 N, selon la figure. Le coefficient de frottement entre le corps et le plan incliné est de $1/(5\sqrt{3})$, et le plan forme un angle de 30°

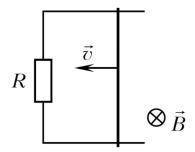
avec l'horizontale. L'accélération de la chute libre est de 10 m/s², orientée selon la figure. Les dimensions du corps sont négligeables.

- a) Représentez les forces agissant sur le corps pendant le mouvement sur le plan incliné.
- b) Déterminez la distance que le corps parcourra pendant 2,0 s.

$$\sin 30^{\circ} = 0, 5;$$
 $\cos 30^{\circ} = \sqrt{3}/2$
RÉSOLUTION

a)	a)
L	L
0	0
1	1
2	2
3	3

0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7


b)

L

b)

L

Une barre se déplace à vitesse constante sur deux rails parallèles sous l'action 11 d'une force horizontale de 3,0 N dans un champ magnétique vertical homogène d'inductance 300 mT (voir la figure cidessus). Quelle est la vitesse de la barre si sa longueur est de 1,0 m et si la résistance est R=0,03 Ω. Vous allez négliger la résistance électrique des rails, de la barre et des fils de connexion, la force de friction entre les rails et la barre. Indiquez la sens du courant électrique dans la barre mobile.

RÉSOLUTION

L	L
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	10
11	11
12	12

12	Vous avez une source de tension dont la résistance interne et la force électro-motrice (la tension à vide) sont inconnues, une résistance dont la valeur est connue, un ampèremètre idéal et des fils de connexion. Vous devez déterminer la valeur de la résistance interne de la source, si l'ampèremètre peut également mesurer des valeurs de courant élevées, y compris en court-circuit. a) Décrivez comment vous allez procéder, montrez le schéma du circuit. b) Déduisez la formule de calcul de la résistance interne de la source. RÉSOLUTION		
		a)	a)
		L 0	L 0
		1	1
		2	2
		3	3
		4	4
		5	5
		6 7	6 7
		,	,
		b)	b)
		L	L
		0	0 1
		2	2
		3	3

ANNEXE

Constantes physiques

Charge élémentaire $e = 1,60 \cdot 10^{-19}$ C

Masse au repos de l'électron $m_e = 9.11 \cdot 10^{-31} \text{ kg}$

Vitesse de la lumière dans le vide

$$c = 3,00 \cdot 10^8 \text{ m/s}$$

Constante gravitationnelle $K = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$ Constante de Planck $h = 6,63 \cdot 10^{-34} \text{ J} \cdot \text{s}$

Constante électrique $\varepsilon_0 = 8.85 \cdot 10^{-12} \text{ F/m}$

Constante d'Avogadro $N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$

Constante de Boltzmann $k = 1,38 \cdot 10^{-23} \text{ J/K}$

Constante universelle des gaz parfaits

$$R = 8.31 \,\mathrm{J/(mol \cdot K)}$$

Constante de Coulomb $k_e = 9,00 \cdot 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

MÉCANIQUE

$$\begin{split} x &= x_0 + v_{0x}t \; ; \; x = x_0 + v_{0x}t + \frac{a_xt^2}{2} \; ; \; v_x = v_{0x} + a_xt \; ; \; v_x^2 - v_{0x}^2 = 2a_xs_x \; ; \; v = \frac{1}{T} \; ; \; \omega = \frac{2\pi}{T} \; ; \; v = \omega \, r \; ; \; \omega = 2\pi v \; ; \; a_c = \frac{v^2}{r} \; . \\ \vec{F} &= m\vec{a} \; ; \; \vec{F}_{12} = -\vec{F}_{21} \; ; \; F = K \frac{m_1m_2}{r^2} \; ; \; \vec{F}_e = -k\Delta \vec{l} \; ; \; F_f = \mu N \; ; \; F_A = \rho_0 Vg \; ; \; p = \frac{F}{S} \; ; \; p = \rho gh \; ; \; M = Fd \; . \\ \vec{p} &= m\vec{v} \; ; \; \Delta \vec{p} = \vec{F}\Delta t \; ; \; L_{mec.} = Fs\cos\alpha \; ; \; P = \frac{L}{t} \; ; \; E_c = \frac{mv^2}{2} \; ; \; L_{12} = E_{c2} - E_{c1} \; ; \; E_p = mgh \; ; \; E_p = \frac{kx^2}{2} \; ; \; L_{12} = -\left(E_{p2} - E_{p1}\right); \end{split}$$

$$x = A\sin\left(\omega t + \varphi_0\right); \ T = 2\pi\sqrt{\frac{l}{a}}; \ T = 2\pi\sqrt{\frac{m}{b}}; \ \lambda = vT;$$

PHYSIQUE MOLÉCULAIRE ET THERMODYNAMIQUE

$$p = \frac{1}{3} m_0 n \overline{v^2} = \frac{2}{3} n \overline{\varepsilon}_{tr.}; \overline{\varepsilon}_{tr.} = \frac{3}{2} kT; p = nkT; v_T = \sqrt{\frac{3RT}{M}}; pV = vRT; v = \frac{m}{M} = \frac{N}{N_A}; R = kN_A; M = m_0 N_A;$$

$$pV = const.$$
; $\frac{p}{T} = const.$; $\frac{p}{T} = const.$; $\frac{V}{T} = const.$; $\frac{pV}{T} = const.$; $\frac{pV}{T} = const.$; $\frac{pV}{T} = const.$

$$U = \frac{3}{2} \frac{m}{M} RT \; ; \; L = p \Delta V \; ; \; Q = cm \Delta T \; ; \; Q = C_M v \Delta T \; ; \; c_p - c_V = \frac{R}{M} \; ; \; Q_V = \lambda_V m \; ; \; Q = qm \; ; \; Q = \Delta U + L \; ; \; \eta = \frac{Q_1 - \left| Q_2 \right|}{Q_1} \; ; \; Q_1 = cm \Delta U + L \; ; \; \eta = \frac{Q_1 - \left| Q_2 \right|}{Q_1} \; ; \; Q_2 = cm \Delta U + L \; ; \; \eta = \frac{Q_1 - \left| Q_2 \right|}{Q_1} \; ; \; Q_2 = cm \Delta U + L \; ; \; \eta = \frac{Q_1 - \left| Q_2 \right|}{Q_1} \; ; \; Q_2 = cm \Delta U + L \; ; \; Q_3 = cm \Delta U + L \; ; \; Q_4 = cm \Delta U + L \; ; \; Q_5$$

$$\eta_{\text{max.}} = \frac{T_1 - T_2}{T_1}; \quad \varphi = \frac{\rho_a}{\rho_s} = \frac{p_a}{p_s}; \quad \sigma = \frac{F_s}{l}; \quad h = \frac{4\sigma}{\rho g d}; \quad \frac{F}{S} = E \frac{\Delta l}{l}; \quad l = l_0 (1 + \alpha t);$$

$$F = \frac{k_e}{\varepsilon_r} \frac{|q_1 q_2|}{r^2}; E = \frac{k_e}{\varepsilon_r} \frac{|q|}{r^2}; k_e = \frac{1}{4\pi\varepsilon_0}; \vec{E} = \frac{\vec{F}}{q_0}; E = \frac{U}{d}; \varphi = \frac{W}{q_0}; \varphi = \frac{kq}{r}; U = \frac{L}{q_0}; \varphi = \frac{L}{q_0}; \varphi = \frac{R}{r}; \psi = \frac{L}{q_0}; \varphi = \frac{L}{q_0}; \varphi = \frac{R}{r}; \psi = \frac{L}{q_0}; \varphi = \frac{L}{q_0$$

$$C = \frac{q}{U} \; ; \; C = \frac{\varepsilon_0 \varepsilon_r S}{d} \; ; \; \; C_p = \sum_{i=1}^n C_i \; ; \; \frac{1}{C_S} = \sum_{i=1}^n \frac{1}{C_i} \; ; \; \; W_e = \frac{CU^2}{2}$$

$$I = \frac{\Delta q}{\Delta t} \; ; \; I = \frac{E}{R+r} \; ; \; I_{c.c.} = \frac{E}{r} \; ; \; R = \rho \frac{l}{S} \; ; \; R_s = \sum_{i=1}^n R_i \; ; \; \frac{1}{R_p} = \sum_{i=1}^n \frac{1}{R_i} \; ; \; L = IUt \; ; \; Q = I^2Rt \; ; \; P = IU \; ; \; \eta = \frac{L_u}{L_t} \; ; \; \frac{1}{R_p} = \frac{L_u}{R_t} \; ; \; \frac{1}{R_t} \; ; \; \frac{1}$$

$$F_{\scriptscriptstyle m} = IBl\sin\alpha$$
 ; $F_{\scriptscriptstyle L} = qvB\sin\alpha$;

$$\Phi = BS\cos\alpha\;;\;\; \varepsilon_i = -\frac{\Delta\Phi}{\Delta t}\;;\;\; \Phi = Li;\;\; \varepsilon_{ai} = -L\frac{\Delta i}{\Delta t}\;;\;\; W_m = \frac{LI^2}{2}\;;\;\; q = q_m\cos\left(\omega t + \varphi_0\right)\;;\; I = \frac{I_m}{\sqrt{2}}\;;\;\; U = \frac{U_m}{\sqrt{2}}\;;\;\; V = \frac{U_m}{\sqrt{2}$$

$$\frac{I_2}{I_1} \approx K = \frac{N_1}{N_2} = \frac{U_1}{U_2} \; ; \; \; X_C = \frac{1}{\omega C} \; ; \; \; X_L = \omega L \; ; \; T = 2\pi \sqrt{LC} \; ; \; \;$$

$$\Delta_{\max} = \pm 2m \cdot \frac{\lambda}{2} \; ; \; \Delta_{\min} = \pm (2m+1) \cdot \frac{\lambda}{2} \; ; \; d\sin\varphi = \pm m\lambda \; ; \; d = \frac{l}{N} = \frac{1}{n}$$

$$\tau = \frac{\tau_0}{\sqrt{1 - v^2/c^2}}; \ l = l_0 \sqrt{1 - v^2/c^2}; \ m = \frac{m_0}{\sqrt{1 - v^2/c^2}}; \ \vec{p} = \frac{m_0 \vec{v}}{\sqrt{1 - v^2/c^2}} = \frac{E}{c^2} \vec{v}; \ E = mc^2; \ E_c = (m - m_0)c^2;$$

$$\varepsilon_{ph} = \frac{hc}{\lambda} \; ; \; \; p_{ph} = \frac{h}{\lambda} \; ; \; \; h\nu = L_e + \frac{mv_{\text{max}}^2}{2} \; ; \; \; \nu = \frac{c}{\lambda} \; ; \; \; h\nu = E_n - E_m \; ; \\ N = N_0 e^{-\lambda t} \; ; \quad \lambda = \frac{\ln 2}{T_{1/2}} \; ; \quad N = N_0 2^{-\frac{t}{T_{1/2}}} \; ; \quad \lambda = \frac{\ln 2}{T_{1/2}} \; ; \quad \lambda = \frac{\ln 2}{$$

$${}_{Z}^{^{A}}X \rightarrow {}_{Z-2}^{^{A-4}}Y + {}_{2}^{^{4}}He \; ; {}_{Z}^{^{A}}X \rightarrow {}_{Z+1}^{^{A}}Y + {}_{-1}^{^{0}}e \; ; \; 1 \; \mathrm{eV} = 1,60 \cdot 10^{-19} \; \mathrm{J} \; ; \; 1 \; \mathrm{u} = 1,66 \cdot 10^{-27} \; \mathrm{kg} \; .$$