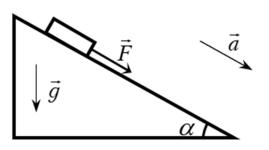

Nº	Задания	Бал	ІЛЫ					
	І. В ЗАДАНИЯХ 1 - З ПРИВЕДИТЕ КРАТКИЙ ОТВЕТ В СООТВЕТСТВИИ	C						
ТРЕБОВАНИЯМИ:								
1	Дополните следующие предложения, чтобы они были истинными:	L	L					
	а) С увеличением высоты относительно поверхности земли, напряжённость гравитационного поля земли	0	0					
	равитационного поля земли	2	2					
	с) При последовательном соединении двух конденсаторов с ненулевыми	4	4					
	электрическими емкостями эквивалентная емкость всегда будет	6	6					
	чем каждая из исходных емкостей в отдельности.							
	d) Индуктивное сопротивление идеальной катушки увеличивается с	8	8					
	частоты приложенного переменного напряжения.	10	10					
2	е) Импульс фотона тем больше, чем длина волны.							
2	Установите (стрелками) соответствие между физическими величинами и	L	L					
	их единицами измерения: Перемещение м-3	0	0					
	Коэффициент упругости Н/Кл	2	2					
	Концентрация молекул м	4	4					
	Сила тока Н/м	6	6					
	Релятивистский импульс А							
	кг·м/с	8	8					
		10	10					
3	Определите истинность следующих утверждений (обведите букву И, если	L	L					
	Вы считаете утверждение истинным, и букву Л, если оно ложно):	0	0					
	 а) При прямолинейном движении вектор перемещения направлен всегда вдоль одной прямой. И Л 	2	2					
	b) Если равнодействующая внешних сил, действующих на систему тел, равна	4	4					
	нулю, то механический импульс системы сохраняется. И Л	6						
	с) При изотермическом сжатии концентрация молекул газа уменьшается. И Л	_	6					
	d) При наложении двух когерентных волн с оптической разностью хода, равной	8	8					
	целому числу длин волн, наблюдается максимум интерференции. И Л	10	10					
	е) За счет внешнего фотоэффекта металлическое тело, на которое падает							
	излучение, будучи изолированным от других тел, заряжается положительно. И Л							
1	И Ј. И. В ЗАДАНИЯХ 4 - 9 ПРИВЕДИТЕ РЕШЕНИЕ И ОТВЕТ, ЗАПИСЫВАЯ И	X R						
·	ОТВЕДЕННЫХ МЕСТАХ							
4	Маленький шар, прикрепленной к нити, равномерно	L	L					
	вращается в вакууме в горизонтальной плоскости.	0	0					
	Укажите на рисунке силы, действующие на тело в	1	1					
	данном положении, результирующую этих сил и $igvee \Psi g$	2	2					
	ускорение шара.	3	3					
	Q+	4	4					
<u> </u>								

5	Определить энергию электромагнитного излучения частоты $3 \cdot 10^{14}$ Гц, если оно содержит 10^{17} фотонов. РЕШЕНИЕ:		
	I EIIIEIIII.	L	L
		0	0
		1	1
		2	2
		3	3
		4	4
		5	5
6	Плоский воздушный конденсатор подключен к источнику постоянного напряжения. Как изменится энергия электрического поля между обкладками конденсатора, если расстояние между ними уменьшится в 2 раза?		
	РЕШЕНИЕ:	L	L
		0	0
		1	1
		2	2
		3	3
		4	4
		5	5
		6	6
7	Тело движется под действием постоянной силы 10 H, так что кинетическая энергия тела изменяется от 50 Дж до 20 Дж. Определить путь, пройденный телом. Угол между векторами силы и скорости равен 180°.		
	РЕШЕНИЕ:	L	L
		0	0
		1	1
		2	2
		3	3
		4	4
		5	5
		6	6

III. В ЗАДАНИЯХ 10 – 12 ПРИВЕДИТЕ ПОЛНОЕ РЕШЕНИЕ ПРЕДЛАГАЕМЫХ СИТУАЦИЙ


Тело массой 1,0 кг спускается по наклонной плоскости без начальной скорости под действием постоянной силы 6,0 H, как показано на рисунке. Коэффициент трения между телом и наклонной плоскостью равен $\frac{1}{2\sqrt{3}}$, а плоскость

образует угол 30° с горизонталью. Считать ускорение свободного падения равным $10~\text{m/c}^2$, направленное, как показано на рисунке. Размеры тела незначительны.

- а) Изобразите силы, действующие на тело во время движения по наклонной плоскости.
- b) Определите время, за которое тело пройдет расстояние 17 см по наклонной плоскости.

$$\sin 30^{\circ} = 0, 5; \quad \cos 30^{\circ} = \sqrt{3}/2$$

РЕШЕНИЕ:

a)

L

1

2

3

b)

1

3

4 5

6

7

a)

L

0

1

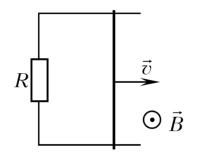
2

3

b)

L 0 1

2


3 4

5

6

7 8

11 Стержень перемещается по двум параллельным шинам с постоянной скоростью под действием горизонтальной силы 3,0 Н в однородном вертикальном магнитном поле (см. рисунок вид сверху). Какую силу надо приложить к стержню чтобы при уменьшении сопротивления *R* в 4 раза он двигался с той же скоростью. Можно пренебречь электрическим сопротивлением шин, стержня и соединительных проводов, силой трения между шинами и стержнем. РЕШЕНИЕ:

		ı	
		L	L
		0	0
		1	1
		2	2
		3	3
		4	4
		5	5
		6	6
		7	7
		8	8
		9	9
		10	10
		11	11
12	В вашем распоряжении источник напряжения с неизвестными внутренним сопротивлением и ЭДС, два одинаковых резистора с известным сопротивлением,		
	идеальный амперметр, соединительные провода. Необходимо определить ЭДС		
	источника. Амперметр нельзя использовать для измерения токов короткого		
	замыкания источника напряжения.	a)	a)
	а) Опишите, ваши действия, изобразите схему цепи.	L	L
	b) Выведите расчетную формулу для ЭДС источника. РЕШЕНИЕ:	0	0
	FEMERIME.	1	1
		2	2
		3	3
		4	4
		5	5
		6	6
		b)	b)
		L	L
		0	0
		1	1
		2	2
		3	3
		4	4

ПРИЛОЖЕНИЯ

Физические постоянные

Элементарный заряд $e = 1,60 \cdot 10^{-19} \, \text{K}_{\text{Л}}$

Масса покоя электрона $m_e = 9,11 \cdot 10^{-31} \, \mathrm{kr}$

Скорость света в вакууме $c = 3,00 \cdot 10^8 \,\text{м/c}$

Гравитационная постоянная $K = 6,67 \cdot 10^{-11} \text{ H} \cdot \text{M}^2/\text{kg}^2$

Электрическая постоянная $\varepsilon_0 = 8,85 \cdot 10^{-12} \, \Phi/M$

Постоянная Авогадро $N_A = 6,02 \cdot 10^{23} \text{ моль}^{-1}$

Постоянная Больцмана $k = 1,38 \cdot 10^{-23}$ Дж/К

Газовая постоянная $R = 8,31 \, \text{Дж} / (\text{моль} \cdot \text{K})$

Постоянная Планка $h = 6.63 \cdot 10^{-34} \, \text{Дж} \cdot \text{с}$

Электростатическая постоянная

 $k_e = 9,00 \cdot 10^9 \,\mathrm{H \cdot m^2 / Kn^2}$

МЕХАНИКА

$$x = x_0 + v_{0x}t \; ; \; x = x_0 + v_{0x}t + \frac{a_xt^2}{2} \; ; \; v_x = v_{0x} + a_xt \; ; \; v_x^2 - v_{0x}^2 = 2a_xs_x \; ; \; v = \frac{1}{T} \; ; \; \omega = \frac{2\pi}{T} \; ; \; v = \omega r \; ; \; \omega = 2\pi v \; ; \; a_c = \frac{v^2}{r} \; .$$

$$\vec{F} = m\vec{a} \; ; \; \vec{F}_{12} = -\vec{F}_{21} \; ; \; F = K \frac{m_1m_2}{r^2} \; ; \; \vec{F}_e = -k\Delta \vec{l} \; ; \; F_{Tp} = \mu N \; ; \; F_A = \rho_0 Vg \; ; \; p = \frac{F}{S} \; ; \; p = \rho gh \; ; \; M = Fd \; .$$

$$\vec{P} = m\vec{v} \; ; \; \Delta \vec{p} = \vec{F}\Delta t \; ; \; A = Fs\cos\alpha \; ; \; P = \frac{L}{t} \; ; \; E_\kappa = \frac{mv^2}{2} \; ; \; A_{12} = E_{\kappa 2} - E_{\kappa 1} \; ; \; E_n = mgh \; ; \; E_n = \frac{kx^2}{2} \; ; \; A_{12} = -\left(E_{n2} - E_{n1}\right) \; ;$$

$$x = A\sin\left(\omega t + \varphi_0\right) \; ; \; T = 2\pi\sqrt{\frac{I}{g}} \; ; \; T = 2\pi\sqrt{\frac{m}{k}} \; ; \; \lambda = vT \; ;$$

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

$$\begin{split} p &= \frac{1}{3} m_0 n \overline{v^2} = \frac{2}{3} n \overline{\varepsilon}_{tr.}; \ \overline{\varepsilon}_{tr.} = \frac{3}{2} kT \ ; \ p = nkT \ ; \ v_T = \sqrt{\frac{3RT}{M}} \ ; \ pV = vRT \ ; \ v = \frac{m}{M} \ ; \ R = kN_A \ ; \ M = m_0 N_A \ ; \\ pV &= const. \ ; \ \frac{p}{T} = const. \ ; \ \frac{pV}{T} = const. \ ; \ m = const. \ ; \\ U &= \frac{3}{2} \frac{m}{M} RT \ ; \ A = p\Delta V \ ; \ Q = cm\Delta T \ ; \ Q = C_M v\Delta T \ ; \ c_p - c_V = \frac{R}{M} \ ; \ Q_V = \lambda_V m \ ; \ Q_T = \lambda_T m \ ; \ Q = qm \ ; \ Q = \Delta U + A \ ; \\ \eta &= \frac{Q_1 - \left|Q_2\right|}{Q_1} \ ; \ \eta_{\text{max.}} = \frac{T_1 - T_2}{T_1} \ ; \ \varphi = \frac{\rho_a}{\rho_s} = \frac{p_a}{\rho_s} \ ; \ \sigma = \frac{F_s}{l} \ ; \ h = \frac{4\sigma}{\rho g d} \ ; \ \frac{F}{S} = E \frac{\Delta l}{l} \ ; \ l = l_0 \left(1 + \alpha t\right) \ ; \end{split}$$

$$F = k_e \frac{|q_1||q_2|}{\varepsilon_r r^2} \; ; E = k_e \frac{|q|}{\varepsilon_r r^2} \; k_e = \frac{1}{4\pi\varepsilon_0} \; ; \; \vec{E} = \frac{\vec{F}}{q_0} \; ; \; E = \frac{U}{d} \; ; \; \varphi = \frac{kq}{r} \; ; \; U = \frac{L}{q_0} \; ;$$

$$C = \frac{q}{U} \; ; \; C = \frac{\varepsilon_0 \varepsilon_r S}{d} \; ; \; C_P = \sum_{i=1}^n C_i \; ; \; \frac{1}{C_S} = \sum_{i=1}^n \frac{1}{C_i} \; ; \; W_e = \frac{CU^2}{2}$$

$$I = \frac{\Delta q}{\Delta t} \; ; \; I = \frac{\varepsilon}{R+r} \; ; \; I_{\kappa.s.} = \frac{\varepsilon}{r} \; ; \; R = \rho \frac{l}{S} \; ; \; R_s = \sum_{i=1}^n R_i \; ; \; \frac{1}{R_p} = \sum_{i=1}^n \frac{1}{R_i} \; ; \; A = IUt \; ; \; Q = I^2Rt \; ; \; P = IU \; ; \; \eta = \frac{L_u}{L_t} \; ;$$

$$F_A = IBI \sin \alpha \; ; \; F_A = qvB \sin \alpha \; ;$$

$$\Phi = BS \cos \alpha \; ; \; \varepsilon_i = -\frac{\Delta \Phi}{\Delta t} \; ; \; \Phi = Li; \; \varepsilon_{ai} = -L\frac{\Delta i}{\Delta t} \; ; \; W_m = \frac{LI^2}{2} \; ;$$

$$q = q_m \cos(\omega t + \varphi_0) \; ; I = \frac{I_m}{\sqrt{2}} \; ; \; U = \frac{U_m}{\sqrt{2}} \; ; \; \frac{I_2}{I_1} \approx K = \frac{N_1}{N_2} = \frac{U_1}{U_2} \; ; \; X_C = \frac{1}{\omega C} \; ; \; X_L = \omega L \; ; \; T = 2\pi\sqrt{LC} \; ; \; \Delta_{\max} = \pm 2m \cdot \frac{\lambda}{2} \; ;$$

$$\Delta_{\min} = \pm (2m+1) \cdot \frac{\lambda}{2} \; ; \; d \sin \varphi = \pm m\lambda \; ; \; d = \frac{1}{N} = \frac{1}{n}$$

$$\begin{split} \tau &= \frac{\tau_0}{\sqrt{1-v^2/c^2}}; \ l = l_0 \sqrt{1-v^2/c^2}; \quad m = \frac{m_0}{\sqrt{1-v^2/c^2}}; \quad \vec{p} = \frac{m_0 \vec{v}}{\sqrt{1-v^2/c^2}} = \frac{E}{c^2} \vec{v}; \quad E = mc^2; \ E_\kappa = (m-m_0)c^2; \\ \mathcal{E}_f &= \frac{hc}{\lambda}; \quad p_f = \frac{h}{\lambda}; \quad h\nu = A_{\text{\tiny BMX}} + \frac{mv_{\text{\tiny MAKC}}^2}{2}; \quad \nu = \frac{c}{\lambda}; \quad h\nu = E_n - E_m; \\ N &= N_0 e^{-\lambda t}; \quad \lambda = \frac{\ln 2}{T_{1/2}}; \quad N = N_0 2^{-\frac{t}{T_{1/2}}}; \\ \chi_{Z}^A &\to \chi_{Z-2}^{A-4}Y + \chi_{Z+1}^4 Y + \chi_{Z+1}^0 Y + \chi_{Z$$