

Tick the programming language which you will use to perform the problems proposed in the topics II and III:

- C/C++

Nr	Item	Score	
	Topic I. (25 points)		
1	19 short films attended an ecology conference. The films titles were encoded using binary words of the same length. The 19 titles make up all the possible messages of a source of information. They were encoded using binary words of minimum length. a) Determine the minimum length of the binary words used for the unique encoding and decoding of all the messages of the given source. Tick in the third column of the answer table the rightness of the proposed codes of minimum length. Write the used formula: \qquad Write the calculations performed to determine the minimum length of the binary words: Answer: b) It is known that the amount of information of a film is equal to $\mathbf{4 5 0 0} \mathbf{M B}$, the frame rate is equal to 25 frames per second, and the amount of information of a frame is equal to 4 Mbits . Determine and write in the answer space the duration in minutes of a film with the given characteristics. Write the used formula: \qquad Write the calculations: Answer: $\mathbf{T}=$ \qquad minutes	L 0 1 1 2 3 4 5 5 6 7 8 9	L 0 1 2 3 4 5 6 7 8 9
2	a) Let three numbers be given: $(\mathbf{1 7 2 , 2})_{8},(122,5)_{10},(6 A, 2)_{16}$. Write the given numbers in descending order in the space provided for the answer. Answer: \qquad) _> \qquad)_> \qquad) Write two conversions of given numbers from one numbering system to another: b) For each of the following statements tick the right answer: - The Roman numbering system is: Positional \square Non-positional - The number 8 belongs to the octal numbering system: \square True False	$\begin{array}{ll}\text { L } \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 & \\ 4 \\ 5 & \\ 6 & \\ 7 & \\ 8 & \\ 9\end{array}$	L 0 1 2 3 4 5 6 7 8 9

3	The program Pr3 from which some cod fragments are omitted is given. Complete the missing fragments so that the program reads integer numbers from the keyboard, calculates and displays the arithmetic mean of all the read numbers whose module is greater than 10. The last number read from the keyboard will be 100 . If there are several correct solutions, present any of them.	$\begin{aligned} & \hline \text { L } \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	L 0 1 2 3 4 5 6
4	A natural number n - the number of the sides of a regular polygon is given. Task: Write a program that determines whether the n -sided regular polygon is a triangle or a hexagon and calculates in degrees the size of the angles of this regular polygon. Input. A natural number n is read from the keyboard. Output. A word will be displayed on the screen on the first line - Triunghi if $n=3$ or Hexagon if $n=6$. On the second line will be displayed the size in degrees of the angles of the given regular polygon. Note. The size in degrees of the angles of the regular polygon with n sides is equal to: $\frac{(n-2) \cdot 180}{n}$	$\begin{array}{l\|} \hline L \\ \hline \end{array}$	

Topic III. (30 points)				
1	The following Pascal program is given: ```Program pr1; Type tt = array [1..10] of integer; var t : tt; n : integer; function w(x : integer): integer; var s, k : integer; begin s := 0; k := 1; while k <= x do begin s := s + x div k; k := k + 1; end; w := s; end; procedure q ; var i:integer; begin for i:=1 to n do begin if i mod 2 = 0 then t[i] := w(i) else t[i] := sqr(i); write(t[i], ' '); end; end; Begin n := 4; q ; end.```	Perform the following tasks for the program pr1: a) Write the name of the structured data type variable used in the program pr1: b) Write all the values of the actual parameter in the calls of function w (separated by commas) used at the execution of the program pr1: \qquad c) Write the name of the subprogram which uses the global variables for communication: \qquad d) Write the name of the standard function used in the program pr1: \qquad e) Write what will be displayed in the result of executing the program pr1: \qquad	L 0 1 2 3 4 5 6 7	$\begin{aligned} & \mathrm{L} \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$


	```The following C++ program is given: // Program pr1 #include <iostream> #include <cmath> using namespace std; typedef int tt [10]; tt t; int n; int w( int x ) { int s = 0, k = 1; while ( k <= x ) { s=s+x/k; k ++; } return s; } void q () { int i; for (i = 1; i <= n; i++) { if ( i % 2 == 0 ) t[i] = w(i); else t[i] = pow( i, 2 ); } cout << t[i] <<' '; } int main() { n = 4; q (); return 0; }```	Perform the following tasks for the program pr1:   a) Write the name of the structured data type variable used in the program pr1: $\qquad$   b) Write all the values of the actual parameter in the calls of function w (separated by commas), used in the execution of the program pr1: $\qquad$   c) Write the name of the function which uses the global variables for communication: $\qquad$   d) Write the name of the standard function used in the program pr1: $\qquad$   e) Write what will be displayed as a result of executing the program pr1:		
2	In the contest of mathematics, physics and computer Each student has received an index from 1 to n . The s of points for each of the three tests - mathematics, phys   Task: Write a program that determines the index of the program will contain a subprogram named DE i - a student's index and will return the total a   Input: The text file Exact. in contains on the first students participating in the contest. Each separated by space - the points accumulated physics, computer science. The numbers in lin in the competition tests.   Output: The text file Exact. out will contains in a with the maximum total score.   Note. It is known that only one student earned a max	nce participated $n(1 \leq n \leq 30)$ students. ents' results were assessed with a number , computer science.   student with the maximum total score. The hich will receive as a parameter an integer unt of points accumulated by that student. an integer $n(1 \leq n \leq 30)$ - the number of he following $n$ lines contains 3 integers a student in three tests - mathematics, +1 represent the scores of the student $\mathbf{i}$   a single integer - the index of the student   m total score.	L   0   1   1   2   3      4   5      7   7   8   9   10   10   11   12   13   14   15   16	$L$ 0 1 1 2 3 4 5 6 7 8 9 10 11 12 12 13 14 15 16

Example:

Exact.in	Exact. out	The solution will be appreciated for:   types and variable declarations;	
3		3	
30	12	20	
20	20	15	
25	28	30	
operations with the text files; reading			
and writing data; algorithm organization.			


3	A marine research probe was launched from a helicopter. When lowering the probe, it follows the trajectory described by the function $f(x)=-0,7 \mathrm{x}^{2}+6$ on the segment $[a ; b]$.   Write a program that will determine the distance from the probe landing point $\mathbf{x}$ to the destination point with the coordinates $(3,3 ; 0)$.   The program will calculate the abscissa of the probe landing point, solving the equation $f(x)=0$ on the segment $[0 ; 3,5]$ by the string method for $\mathrm{n}=30$ divisions of the given segment, having the fixed extremity at point $\mathbf{b}=3,5$.   Input: The values of the extremities of the segment [ $0 ; 3,5]$, the number of divisions $\mathrm{n}=30$ of the given segment and the abscissa $\mathbf{p x}=3,3$ of the destination point are assigned directly in the program text.   Output: A real number - the difference between px and the calculated abscissa of the probe landing point - is displayed on the screen.	  The following algorithm can be used to solve the equation:   Step 0. Initialization: $\mathrm{a} \Leftarrow 0, \mathrm{~b} \Leftarrow 3,5, \mathrm{n} \Leftarrow 30$.   Step 1. Assignment: $\mathrm{e} \Leftarrow \mathrm{b}, \mathrm{x}_{0} \Leftarrow \mathrm{a}$.   Step 2. For all $\mathbf{i}$ from 1 to n calculate $x_{i}$ according to the formula: $x_{i} \Leftarrow x_{i-1}-\frac{f\left(x_{i-1}\right)}{f(e)-f\left(x_{i-1}\right)}\left(e-x_{i-1}\right)$	$\begin{aligned} & \hline \mathrm{L} \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$

## Topic IV. (13 points)

1 A database was created in the MS Access. Fragments of the tables of this database are shown in Image 1:
\# Plante

|  | Cod_pl | Denumire | Cod_arb | Pret | Imagine |
| :--- | :--- | ---: | ---: | :--- | :---: | Stoc •


Cod_com -	Cod_pl -	Cantitatea *	Data livrarii -	Email_cumparator
1	P001	20	15.02.2022	parc10@gmail.com
2	P004	40	25.02.2022	parc10@gmail.com
3	P003	15	22.02.2022	izvor ao@yahoo.com
4	P004	60	17.03.2022	izvor ao@yahoo.com
5	P005	20	05.03.2022	decorfirm@mail.ru

Using the data from the database tables:
a) Fill in all the necessary elements in Image 2 , including the relations between the tables and define a parameter query in Design View mode that:

- displays data from three fields: Denumire, Tip_arbore, Data livrarii;
- displays data only about trees that are in stock (Stoc field);
- the type of the trees is indicated as a parameter at the time of the query execution (Tip_arbore field);
- sorts records ascending according to the date of delivery (Data livrarii field).


