Information units Ir			Information units			Con	version table	
						octa	l binary	
1 bit – elem	entary unit		1 Kbit (Kilobit) =	2 ¹⁰ bits = 1024 bits		0	000	
1B (Byte) =	8 bits		1 Mhit (Magahit) -	210 Khita (1024 Khi	ta)	1	001	
1KB (KiloB	vte) = 2 ¹⁰ B (1024 B)			15)	2	010	
1MR (Mega	$(0, 10) = 2^{10} \text{ KB}$	(1024 KB)	1 Gbit (Gigabit) =	210 Mbits (1024 Mbi	its)	3	011	
	$P_{\rm MD} = 2^{10} MD$	(1024 ND)	1 Thit (Torobit) -	210 Chite (1024 Chit	te)	4	100	
	$Syle = 2^{10}$ IVID ((1024 IVIB)			15)	5	101	
11B (Terab	$Syte) = 2^{10} GB$	(1024 GB)				6	110	
						7	111	
Table of	of powers of n	umber 2			C	onvers	sion table	
2º = 1				hexadecimal	bin	ary	hexadecimal	binary
2 ¹ = 2	2 ⁹ = 512	2 ⁻¹ = 0,5		0	00	000	8	1000
2 ² = 4	2 ¹⁰ = 1024	2 ⁻² = 0,25		1	00	001	9	1001
2 ³ = 8	211 = 2048	2 ⁻³ = 0,125		2	00	J10	A	1010
2 ⁴ = 16	$2^{12} = 4096$	$2^{-4} = 0.0625$	5	3	00	J11	В	1011
25 = 32	$2^{13} = 8102$	$2^{-5} = 0.0312$	2 25	4	0	100	C	1100
$2^{\circ} = 52$	$2^{-1} = 0132$	$2^{-6} = 0.0012$	-0 -05	5	0	101	D	1101
Z° - 04	217 - 10304	$2^{-0} = 0,0150$	020	6	0	110	E	1110
2/= 128	$2^{15} = 32768$	$2^{-7} = 0,0078$	3125	1	01	11	F	1111
28= 256	$2^{16} = 65536$	$2^{-8} = 0,0039$	90625					
Tick the p	ogramming lar	iguage which	n you will use to pe	rform the problem	is proj	posed	in the topics II	and III:
			⊔ Pascal	⊔ c/c+	+			

Nr			Item				Sco	re	
1	19 short films at the same length. were encoded us	Topic I. (25 points) Image: Start films attended an ecology conference. The films titles were encoded using binary words of the same length. The 19 titles make up all the possible messages of a source of information. They are encoded using binary words of minimum length.							
	a) Determine the minimum length of the binary words used for the unique encoding and decodin all the messages of the given source. Tick in the third column of the answer table the rightnes the proposed codes of minimum length.							3 4 5 6	
	Write the used	l formula:					7	7	
	Write the calculations performed to determine the minimum length of the binary words:								
	Answer:	Message	Code		Code ric	htness			
		Film A	101101	🗖 Rig	ht 🛛 Wi	rong			
		Film B	00111	🗖 Rig	ht 🛛 Wi	rong			
	25 frames pe Determine an characteristics Write the used Write the calc	d write in the and the and the and formula: ulations:	swer space the d	on of a frame luration in m	$r: \mathbf{T} = $	film with the given			
2	 a) Let three nur in descendin Write two co b) For each of t ○ The R 	nbers be given: (1 g order in the space Answer: (nversions of given the following staten coman numbering s	numbers from one	5) 10, (6A, answer.) numbering sy numbering sy	. 2) 16 . Wr > (ystem to and	ite the given numbers) other:	L 0 1 2 3 4 5 6 7 8 9	L 0 1 2 3 4 5 6 7 8 9	
	• The R	oman numbering s	ystem is: UPc		U Non-posi				
		umber o beiongs to	o the octal numberil	ng system:					

3	Let the logical function be given: $Y(x_1, x_2, x_3) = x_1 \& x_3 v \overline{x_2 v x_3}$ a) Draw the combinational circuit, which materializes the logic function <i>Y</i> :	b) Write the values of the logic function $Y(x_1, x_2, x_3)$ for each set of values of the independent variables: $\circ Y(0, 1, 0) = ___$ $\circ Y(1, 0, 0) = ___$ c) A right-to-left shift register is initially in state 1110. Complete the table below with two consecutive states of the given register: $\boxed{\frac{Time}{\frac{d_3 d_2 d_1 d_0}{1 1 1 0}}$	L 0 1 2 3 4 5 6 7	L 0 1 2 3 4 5 6 7	
	Торіс II. (32 ро	ints)			
1	<pre>Let the declarations of variables in the Pascal language be given:</pre>				
	Let the declarations of variables in the C++ language be g int a = 5, c = 16; b and the expression: (c % a != 3) && (! b] a) In the following image each operator is accompanied b cassettes the distinct numbers that correspond to the performed. If there are several correct solutions, present any of th (c % a != 3) && (! b]] b) Write the type of the given expression: c) Calculate and write the value of the given expression:	given: ool b = true; (3 + 2 * a > c)) by a data entry cassette. Write in the empty e order in which the given operations are nem. (3 + 2 * a > c))			

2 a) The following program fragment in the **Pascal language**, where the variables **x** and **s** are of the L L 0 0 integer data type, is given: 1 1 s := 0;2 2 while s < 100 do 3 3 begin 4 4 read(x); 5 5 if (x > 0) and $(x \mod 2 <> 0)$ then s := s + x6 6 else write(x, ' ') 7 7 end: 8 8 writeln; write(s); 9 9 Write in the space reserved below what the given program fragment will display if the following data sequence is entered: -5 55 40 105 -60 77 0 200 b) Write in the space reserved below an if statement in **Pascal language** that will display the value **True** if a variable c of **char** type has the value ' + ' or ' - ', otherwise the statement will display the value **False**. If there are several right solutions present any of them. a) The following program fragment in the C++ language, where the variables x and s are of the int data type, is given: s = 0;while (s < 100){ cin >> x;if (x > 0 & x % 2 != 0) s = s + x;else cout << x << ' '; } cout << endl; cout << s;</pre> Write in the space reserved below what the given program fragment will display if the following data sequence is entered: -5 55 40 105 -60 77 0 200 b) Write in the space reserved below an if statement in C++ language that will display the value 1 if a variable c of **char** type has the value ' + ' or ' - ', otherwise the statement will display the value 0. If there are several right solutions, present any of them.

3 The program **Pr3** from which some cod fragments are omitted is given. L L 0 0 Complete the missing fragments so that the program reads integer numbers from the keyboard, 1 1 calculates and displays the arithmetic mean of all the read numbers whose module is greater than 10. 2 2 The last number read from the keyboard will be 100. 3 3 4 4 If there are several correct solutions, present any of them. 5 5 Pascal language C++ language 6 6 Program Pr3; // Program Pr3 var x, s, nr : integer; #include <iostream> _____: real; #include <cmath> begin using namespace std; s := 0; int main() nr := ____ ; { int x, s = 0, nr = ____; float _____; repeat read(x); if _____ (x) > 10 then do begin { s := s + ____; nr := nr + ____; cin >> x ;if (_____ (x) > 10) end; until x ___ s = s + ____; nr = nr + ____; ; m := s / nr ; } writeln(m); } while (x _____); end. m = s / nr;cout << m ;</pre> return 0; } 4 A natural number **n** - the number of the sides of a regular polygon is given. L L 0 0 Task: Write a program that determines whether the n-sided regular polygon is a triangle or a 1 1 **hexagon** and calculates in degrees the size of the angles of this regular polygon. 2 2 3 3 Input. A natural number n is read from the keyboard. 4 4 5 5 **Output**. A word will be displayed on the screen on the first line - **Triunghi** if n = 3 or **Hexagon** 6 6 if n = 6. On the second line will be displayed the size in degrees of the angles of the given 7 7 regular polygon. 8 8 Note. The size in degrees of the angles of the regular polygon with n sides is equal to: $(n-2) \cdot 180$

	.				
4	Topic III. (30	point	ts)		1
1	<pre>The following Pascal program is given: Program pr1; Type tt = array [110] of integer; var t : tt; n : integer; function w(x : integer): integer; var s, k : integer; begin s := 0; k := 1; while k <= x do begin s := s + x div k; k := k + 1; end; w := s; end; procedure q ; var i:integer; begin for i:=1 to n do begin if i mod 2 = 0 then t[i] := w(i)</pre>	Per pr a) b) c) d) e)	form the following tasks for the program 1: Write the name of the structured data type variable used in the program pr1: Write all the values of the actual parameter in the calls of function w (separated by commas) used at the execution of the program pr1: Write the name of the subprogram which uses the global variables for communication: Write the name of the standard function used in the program pr1: Write what will be displayed in the result of executing the program pr1:	L 0 1 2 3 4 5 6 7 7	L 0 1 2 3 4 5 6 7

```
The following C++ program is given:
                                                         Perform the following tasks for the program
                                                        pr1:
     // Program pr1
     #include <iostream>
                                                         a) Write the name of the structured data
     #include <cmath>
                                                            type variable used in the program pr1:
     using namespace std;
      typedef int tt [10];
              tt t;
                                                         b) Write all the values of the actual
              int n;
                                                            parameter in the calls of function w
                                                            (separated by commas), used in the
     int w( int x )
                                                            execution of the program pr1:
        int s = 0, k = 1;
        while (k \le x)
                                                         c) Write the name of the function which
            ł
                                                                   the
                                                                        global
                                                                                  variables
                                                                                              for
                                                            uses
                s = s + x / k;
                                                            communication:
                k ++;
            }
         return s;
                                                         d) Write the name of the standard function
      }
                                                            used in the program pr1:
     void q ()
      ſ
        int i;
                                                         e) Write what will be displayed as a result
        for (i = 1; i <= n; i++)</pre>
                                                            of executing the program pr1:
          if (i \& 2 == 0) t[i] = w(i);
                     else t[i] = pow( i, 2 );
         cout << t[i] <<' ';
        }
      }
     int main()
     {
      n = 4;
      q();
      return 0;
     }
2
     In the contest of mathematics, physics and computer science participated n (1 \le n \le 30) students.
                                                                                                        L
                                                                                                   L
                                                                                                   0
                                                                                                        0
     Each student has received an index from 1 to n. The students' results were assessed with a number
                                                                                                   1
                                                                                                        1
     of points for each of the three tests - mathematics, physics, computer science.
                                                                                                   2
                                                                                                        2
                                                                                                  3
                                                                                                        3
     Task: Write a program that determines the index of the student with the maximum total score. The
                                                                                                   4
                                                                                                        4
             program will contain a subprogram named DE, which will receive as a parameter an integer
                                                                                                        5
                                                                                                   5
             i - a student's index and will return the total amount of points accumulated by that student.
                                                                                                        6
                                                                                                   6
     Input: The text file Exact.in contains on the first line an integer n (1 \le n \le 30) – the number of
                                                                                                   7
                                                                                                        7
                                                                                                   8
                                                                                                        8
             students participating in the contest. Each of the following n lines contains 3 integers
                                                                                                   9
                                                                                                        9
             separated by space - the points accumulated by a student in three tests - mathematics,
                                                                                                   10
                                                                                                        10
             physics, computer science. The numbers in line i+1 represent the scores of the student i
                                                                                                   11
                                                                                                        11
             in the competition tests.
                                                                                                   12
                                                                                                        12
                                                                                                   13
                                                                                                        13
    Output: The text file Exact.out will contains in a line a single integer - the index of the student
                                                                                                   14
                                                                                                        14
            with the maximum total score.
                                                                                                   15
                                                                                                        15
                                                                                                   16
                                                                                                        16
     Note. It is known that only one student earned a maximum total score.
```

Example:	Exact.in	Exact.out	The solution will be appreciated for:	ı	
	3 30 12 20 20 20 15	3	types and variable declarations; operations with the text files; reading and writing data; algorithm organization.		
	25 28 30				

A marine research probe was launched from a helicopter. When lowering the probe, it follows the trajectory described by the function $f(x) = -0.7x^2 + 6$ on the segment [a; b].

3

Write a program that will determine the distance from the probe landing point \mathbf{x} to the destination point with the coordinates (3,3;0).

The program will calculate the abscissa of the probe landing point, solving the equation f(x) = 0 on the segment [0; 3,5] by the **string method** for **n=30** divisions of the given segment, having the fixed extremity at point **b=3**, 5.

- Input: The values of the extremities of the segment [0; 3,5], the number of divisions n=30 of the given segment and the abscissa px=3,3 of the destination point are assigned directly in the program text.
- **Output**: A real number the difference between **px** and the calculated abscissa of the probe landing point is displayed on the screen.

The following algorithm can be used to solve the equation:

Step 0. *Initialization:* a ← 0, b ← 3,5, n ← 30.

Step 1. Assignment: $e \leftarrow b$, $x_0 \leftarrow a$.

Step 2. For all **i** from **1** to **n** calculate x_i according to the formula:

$$x_i \leftarrow x_{i-1} - \frac{f(x_{i-1})}{f(e) - f(x_{i-1})}(e - x_{i-1})$$

