No.	Items	Sco	ore
	ALGEBRA		
1.	Calculate: $\sqrt[3]{3 \cdot \left(\frac{\sqrt{3}}{8}\right)^{-2}}$. Solution:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
2.	Determine the value of the expression: $2^{\log_4 36} - \log_5 \frac{1}{25}$. Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
3.	Solve in the set \mathbb{C} the equation $\begin{vmatrix} z & 5 \\ -2 & z-2 \end{vmatrix} = 0$ and determine the absolute value of the difference of the obtained solutions. <i>Solution:</i> Answer:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
4.	A bowl contains 15 liters of a salt solution with a concentration of 5%. Determine how many liters of water must be poured in the bowl, to get a salt solution with a concentration of 3%. <i>Solution:</i>	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Answer:		

	5.	Determine the smallest integer value of a , so that the equation $x^2 + (a - 8)x + a^2 + 16 = 0$ has two distinct real solutions. <i>Solution:</i> Answer:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
-		GEOMETRY		<u> </u>
	6.	Chords AB and BC of a circle are perpendicular to each other and have the length of $4\sqrt{2}$ cm. Determine the length of the circle. Solution:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
	7.	Determine the total surface area of a rectangular parallelepiped with the dimensions 1 cm, 2 cm and 3 cm. Solution: Answer:	L 0 1 2 3 4 5	L 0 1 2 3 4 5

8.	Consider the right-angled triangle ABC where $m(\angle ABC) = 90^{\circ}$, $AB = 9$ cm, $AC = 15$ cm. On the sides AC and BC the points M and N are respectively taken, so that $MN \parallel AB$ and $BN:NC = 1:2$. Determine the area of the trapezoid $ABNM$. Solution:	A M C	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
9.	A frustum of a right circular cone has the radius of the bases of 1 cm and 4 cm. Determine the measure of the angle between the slant height and the large base, if it is known that the volume of the frustum is equal to $21\sqrt{3}\pi$ cm ³ . <i>Solution:</i>		L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8

	FUNCTIONS				
10.	Consider the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -6x + 2$. Determine the real values of x , for which $f(x) > f(3)$. Solution:	L 0 1 2 3 4 5	L 0 1 2 3 4 5		
11.	Answer: $x \in$ Consider the functions $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -x^2 + 4x - 7$, and $g: \mathbb{R}^* \to \mathbb{R}$, $g(x) = -\frac{6}{x}$. Show that the vertex of the parabola, representing the graph of the function f , lies on the graph of the function g . Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8		
12.	The numbers a , b and c are consecutive terms of an arithmetic progression. Determine the numbers, if it is known that their sum is equal to 60 and $\frac{b}{a} = \frac{5}{4}$. Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8		
	Answer:				

ELEMENTS OF COMBINATORICS, MATHEMATICAL STATISTCS, FINANCIAL CALCULUS AND PROBABILITY THEORY			
13.	A die is thrown 3 times. Determine the probability that the sum of the appearing numbers is equal to 17. Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
14.	The blood glucose levels of a group of patients are as follows: 97, 103, 105, 98, 101, 98, 101, 103, 104, 104. Determine the arithmetic mean and the median of the corresponding statistical series. Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Answer:		

Annex

$$\begin{split} \log_{a}b^{c} &= c\log_{a}b \,, \, a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \, b \in \mathbb{R}^{*}_{+}, c \in \mathbb{R} \\ \log_{a^{c}}b &= \frac{1}{c}\log_{a}b \,, \, a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \, b \in \mathbb{R}^{*}_{+}, c \neq 0 \\ a^{\log_{a}b} &= b, \, a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \, b \in \mathbb{R}^{*}_{+} \\ l_{circle} &= 2\pi R \\ \mathcal{A}_{trapezoid} &= \frac{1}{2}(a+b)h \\ \mathcal{V}_{frustum \ of \ a \ cone} &= \frac{1}{3}\pi h(r^{2} + R^{2} + rR) \\ a_{n} &= a_{1} + (n-1)r \\ C_{n}^{m} &= \frac{n!}{m! \ (n-m)!}, \qquad 0 \leq m \leq n \end{split}$$