No.	Items				
	ALGEBRA				
1.	Calculate the value of the expression: $32^{\frac{3}{5}} - 8$. Solution:	L 0 1 2 3 4 5	L 0 1 2 3 4 5		
2.	Determine the remainder of the division of the polynomial $P(X) = 2X^3 + X^2 - 5X + 1$ by the binomial $X - 2$. Solution:	L 0 1 2 3 4 5	L 0 1 2 3 4 5		
	Answer:				
3.	Solve in the set \mathbb{R} the equation $\sqrt{4-x}=x-2$. <i>Solution:</i>	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8		
	Answer:				

4.	Determine the complex numbers $z=a+bi,\ a,b\in\mathbb{R},\ i^2=-1$, such that $\begin{vmatrix}2z+6i&\bar{z}\\3+i&1\end{vmatrix}=0.$ Solution:	L 0 1 2 3	L 0 1 2 3
		4 5 6 7 8	4 5 6 7 8
5.	Answer: In a triangle, α is the measure in degrees of an angle. Determine α , if it is known that	L	L
	$cos(2\alpha) + sin \alpha - 1 = 0.$ Solution:	0 1 2 3 4 5 6 7 8	0 1 2 3 4 5 6 7 8
	Answer:		

				GE	OMET	RY							
Determine is equal to Solution:	the total 8 cm ³ .	surface	area (of a	cube,	if it	is	known	that	its	volume	L 0 1 2 3 4 5	L 0 1 2 3 4 5
Consider $m(\angle ABC \land AB, AC \land a)$ taken, so	the right) = 90° and BC the that PQCR is the area of	nt-angled and BC points P	trian = 36 c , Q and bus wit	gle m. R a	ABC, On th	whe e sid	es	A P B	R	-0		L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8

8.	The base of a pyramid is a circumscriptible isosceles trapezoid with the bases of 4 cm and 16 cm. All the dihedral angles between the lateral faces and the base of the pyramid are of 60°. Determine the length of the altitude of the pyramid. Solution: Answer:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	MATHEMATICAL ANALYSIS		
9.	Consider the sequence $(b_n)_{n\geq 1},b_{n+1}=3b_n,b_1=2.$ Determine the third term of the sequence. Solution:	L 0 1 2 3 4 5	L 0 1 2 3 4 5

10.	Consider the function $f:(0; +\infty) \to \mathbb{R}$, $f(x) = 4 \ln x - x$.									
	a) Determine the intervals of monotonicity of the function f . Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8							
	Answer:									
	b) Compare $\lim_{x\to+\infty} \left(x - \frac{x^2 - 2x + 3}{x}\right)$ and $f(e)$.	L 0 1	L 0 1							
	Solution: Answer:	2 3 4 5 6 7 8	2 3 4 5 6 7 8							
	c) Calculate: $\int_{1}^{e} \frac{f(x)}{x} dx$. Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8							
	Answer:									

	ELEMENTS OF COMBINATORICS. NEWTON'S BINOMIAL THEOREM. ELEMENTS OF PROBABILITY THEORY AND MATHEMATICAL STATISTICS				
	Four dice are rolled simultaneously. Determine the probability that the product of the numbers appearing on the dice is equal to 15. Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8		
2.	Determine the term containing a^{10} in the binomial expansion $\left(\sqrt{a} + \frac{1}{\sqrt[3]{a}}\right)^{25}$. Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8		

Annex

$$\log_{a} b^{c} = c \log_{a} b, \ a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \ b \in \mathbb{R}^{*}_{+}, c \in \mathbb{R}$$

$$\log_{a^{c}} b = \frac{1}{c} \log_{a} b, \ a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \ b \in \mathbb{R}^{*}_{+}, c \neq 0$$

$$(x^{\alpha})' = \alpha x^{\alpha - 1}, \quad \alpha \in \mathbb{R}$$

$$(\ln x)' = \frac{1}{x}$$

$$\int x^{\alpha} dx = \frac{x^{\alpha + 1}}{\alpha + 1} + C, \quad \alpha \in \mathbb{R} \setminus \{-1\}$$

$$\cos(2\alpha) = \cos^{2} \alpha - \sin^{2} \alpha$$

$$A_{\Delta} = \frac{1}{2} a \ h_{a}$$

$$(a + b)^{n} = C_{n}^{0} a^{n} + C_{n}^{1} a^{n - 1} b + C_{n}^{2} a^{n - 2} b^{2} + \dots + C_{n}^{k} a^{n - k} b^{k} + \dots + C_{n}^{n} b^{n}$$

$$T_{k+1} = C_{n}^{k} a^{n-k} b^{k}, k \in \{0, 1, 2, \dots, n\}$$

$$C_{n}^{m} = \frac{n!}{m! (n - m)!}, \quad 0 \leq m \leq n$$

$$A_{n}^{m} = \frac{n!}{(n - m)!}, \quad 0 \leq m \leq n$$