No.	Items	Score	
1.	Fill in the boxes with two consecutive integers, so that the statement becomes true. $\square<\sqrt[3]{-17}<\square$	L 0	L 0 1 2
2.	Consider the function $f:\left[0 ; \frac{\pi}{2}\right] \rightarrow \mathbb{R}, f(x)=\cos x$. Fill in the box with one of the expressions "monotonically decreasing" or "monotonically increasing", so that the statement becomes true. "The function f is \square ."	L 0 2	L 0 2
3.	On the picture the right circular cone with the altitude $V O=6 \mathrm{~cm}$ is represented. The cone is cut by a plane parallel to the base at the distance of 2 cm from the vertex V. Write in the box the length of the radius of the circle from the cross-section, if it is known that the length of the radius from the base is equal to 15 cm . $O_{1} B_{1}=\square \mathrm{cm} .$	L	L 0 2
4.	Calculate the value of the expression $\log _{2} 5+2 \log _{\frac{1}{4}} 20+32^{\frac{1}{5}}$. Solution: Answer: \qquad	L 0 1 1 2 3 4	L 0 1 2 3 4
5.	Consider $Z=\frac{(3+i)^{2}}{2 i}$, where $i^{2}=-1$. Determine \bar{z}. Solution: Answer:	L 0 1 1 2 3 4 4	L 0 1 2 3 4 5

6.

Solve in the set \mathbb{R} the inequality $\left(\frac{64}{27}\right)^{x-4} \geq\left(\frac{9}{16}\right)^{6+x}$.

Solution:

L L

Answer:
Consider the regular square pyramid $V A B C D$, where $V A C$ is a right-angled triangle with the legs of 6 cm . Determine the volume of the pyramid.

Solution:

1
2
3
4
5
66
8.

Consider the function $f:(0 ;+\infty) \rightarrow \mathbb{R}, f(x)=\ln x+\frac{1}{x}$. Determine the intervals of monotonicity of the function f.
Solution:

Answer: \qquad .
9. In a jar there are 5 white, 4 red and one black balls. Five balls are taken at random. Determine the probability that balls of all three colors are taken.

Solution:

Consider the parallelogram $A B C D$, where $A B=13 \mathrm{~cm}, B D=16 \mathrm{~cm}$ and O is the point of intersection of the diagonals. Determine the perimeter of the parallelogram $A B C D$, if $\mathrm{m}(\angle A O B)=60^{\circ}$.
Solution:

11.	Consider the functions $f, g:[0 ;+\infty) \rightarrow \mathbb{R}, f(x)=\sqrt{x}, g(x)=2-x$. Determine the numerical value of the area of the region bounded by the graphs of the functions f and g, and by the $O y$ - axis. Solution: Answer: \qquad	L 0 1 2 3 3 4 5 6	L 0 1 2 3 4 5 6
12.	Determine the real values of a, such that the equation $\left\|x^{2}+3 a-2\right\|=a$ has 3 real solutions. Solution: Answer: \qquad	L 0 1 2 3 4 5 5 6	L 0 1 2 3 4 5 6

Annex

$$
\begin{gathered}
\log _{a} b+\log _{a} c=\log _{a}(b \cdot c), a \in \mathbb{R}_{+}^{*} \backslash\{1\}, b, c \in \mathbb{R}_{+}^{*} \\
\log _{a} b-\log _{a} c=\log _{a} \frac{b}{c}, a \in \mathbb{R}_{+}^{*} \backslash\{1\}, b, c \in \mathbb{R}_{+}^{*} \\
\log _{a} b^{c}=c \log _{a} b, a \in \mathbb{R}_{+}^{*} \backslash\{1\}, b \in \mathbb{R}_{+}^{*}, c \in \mathbb{R} \\
\log _{a^{c}} b=\frac{1}{c} \log _{a} b, a \in \mathbb{R}_{+}^{*} \backslash\{1\}, b \in \mathbb{R}_{+}^{*}, c \neq 0 \\
C_{n}^{m}=\frac{n!}{m!(n-m)!}, \quad 0 \leq m \leq n \\
\left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1}, \quad \alpha \in \mathbb{R} \\
(\ln x)^{\prime}=\frac{1}{x} \\
\int x^{\alpha} d x=\frac{x^{\alpha+1}}{\alpha+1}+C, \quad \alpha \in \mathbb{R} \backslash\{-1\} \\
c^{2}=a^{2}+b^{2}-2 a b \cos \varphi \\
V_{\text {pyramid }}=\frac{1}{3} \mathcal{A}_{b} \cdot H
\end{gathered}
$$

