No.	Items	Sco	ore
1.	Fill in the boxes with two consecutive integers, so that the statement becomes true. $ < \sqrt[3]{-17} < .$	L 0 1 2	L 0 1 2
2.	Consider the function $f: [0; \frac{\pi}{2}] \to \mathbb{R}, f(x) = \cos x$. Fill in the box with one of the expressions "monotonically decreasing" or "monotonically increasing", so that the statement becomes true. "The function f is"	L 0 2	L 0 2
3.	On the picture the right circular cone with the altitude $VO = 6$ cm is represented. The cone is cut by a plane parallel to the base at the distance of 2 cm from the vertex V. Write in the box the length of the radius of the circle from the cross-section, if it is known that the length of the radius from the base is equal to 15 cm. $O_1B_1 = \Box \text{ cm.}$	L 0 2	L 0 2
4.	Calculate the value of the expression $\log_2 5 + 2\log_{\frac{1}{4}} 20 + 32^{\frac{1}{5}}$. Solution:	L 0 1 2 3 4	L 0 1 2 3 4
5.	Consider $z = \frac{(3+i)^2}{2i}$, where $i^2 = -1$. Determine \bar{z} . Solution: Answer:	L 0 1 2 3 4 5	L 0 1 2 3 4 5

6.	Solve in the set \mathbb{R} the inequality $\left(\frac{64}{27}\right)^{x-4} \ge \left(\frac{9}{16}\right)^{6+x}$. Solution:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
7.	Answer:	L 0 1 2 3 4 5 6	L 0 1 2 3 4 5 6

8.	Consider the function $f: (0; +\infty) \to \mathbb{R}$, $f(x) = \ln x + \frac{1}{x}$. Determine the intervals of monotonicity of the function f . Solution:	L 0 1 2 3 4 5 6	L 0 1 2 3 4 5 6
9.	In a jar there are 5 white, 4 red and one black balls. Five balls are taken at random. Determine the probability that balls of all three colors are taken. Solution: Answer:	L 0 1 2 3 4 5	L 0 1 2 3 4 5

Answer:			456	456
---------	--	--	-----	-----

11.	Consider the functions $f, g: [0; +\infty) \rightarrow \mathbb{R}$, $f(x) = \sqrt{x}$, $g(x) = 2 - x$. Determine the numerical value of the area of the region bounded by the graphs of the functions f and g , and by the Oy – axis. Solution:	L 0 1 2 3 4 5 6	L 0 1 2 3 4 5 6
12.	Determine the real values of a , such that the equation $ x^2 + 3a - 2 = a$ has 3 real solutions. Solution:	L 0 1 2 3 4 5 6	L 0 1 2 3 4 5 6

Annex

$$\begin{split} \log_a b + \log_a c &= \log_a (b \cdot c), \ a \in \mathbb{R}^*_+ \setminus \{1\}, \ b, c \in \mathbb{R}^*_+ \\ \log_a b - \log_a c &= \log_a \frac{b}{c}, \ a \in \mathbb{R}^*_+ \setminus \{1\}, \ b, c \in \mathbb{R}^*_+ \\ \log_a b^c &= c \log_a b, \ a \in \mathbb{R}^*_+ \setminus \{1\}, \ b \in \mathbb{R}^*_+, c \in \mathbb{R} \\ \log_{a^c} b &= \frac{1}{c} \log_a b, \ a \in \mathbb{R}^*_+ \setminus \{1\}, \ b \in \mathbb{R}^*_+, c \neq 0 \\ C_n^m &= \frac{n!}{m! \ (n-m)!}, \qquad 0 \le m \le n \\ (x^\alpha)' &= \alpha \ x^{\alpha-1}, \qquad \alpha \in \mathbb{R} \\ (\ln x)' &= \frac{1}{x} \\ \int x^\alpha dx &= \frac{x^{\alpha+1}}{\alpha+1} + C, \qquad \alpha \in \mathbb{R} \setminus \{-1\} \\ c^2 &= a^2 + b^2 - 2ab \cos \varphi \\ \mathcal{V}_{pyramid} &= \frac{1}{3} \mathcal{A}_b \cdot H \end{split}$$